耐多种除草剂的多花甘蓝的乙酰乳酸合成酶基因和抗性机理的表征

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-11-26 DOI:10.1016/j.plaphy.2024.109324
Hongle Xu , Jingping Cheng , Qiuli Leng , Ran Cao , Wangcang Su , Lanlan Sun , Fei Xue , Yun Han , Renhai Wu
{"title":"耐多种除草剂的多花甘蓝的乙酰乳酸合成酶基因和抗性机理的表征","authors":"Hongle Xu ,&nbsp;Jingping Cheng ,&nbsp;Qiuli Leng ,&nbsp;Ran Cao ,&nbsp;Wangcang Su ,&nbsp;Lanlan Sun ,&nbsp;Fei Xue ,&nbsp;Yun Han ,&nbsp;Renhai Wu","doi":"10.1016/j.plaphy.2024.109324","DOIUrl":null,"url":null,"abstract":"<div><div>Combining imidazolinone-tolerant wheat with imazamox presents an effective solution to combat weed resistance. However, <em>Lolium multiflorum</em>, a troublesome resistant weed infesting wheat fields, may have developed resistance to imazamox, and the potential resistance mechanisms are intriguing. In this study, we explored the susceptibility of <em>L. multiflorum</em> to imazamox and investigated the resistance mechanisms, including the contribution of the target enzyme acetolactate synthase (ALS) to resistance and the presence of non-target-site resistance (NTSR). Eight L. <em>multiflorum</em> populations suspected of being resistant to imazamox were collected, and six populations exhibited resistance, ranging from 2.45-fold to 16.32-fold. The <em>LmALS1</em> gene from susceptible population D3 plants and multiple copies of the LmALS gene (<em>LmALS1</em>, <em>LmALS2</em>, <em>LmALS2α</em>, <em>LmALS3</em>, <em>LmALS3α</em>, <em>LmALS3β</em>) from resistant populations D5 and D8 plants were separately amplified. Two mutations (Pro/Gln197 to Thr, Trp574 to Leu) were found in LmALS1 in the resistant populations. Compared to D3, <em>LmALS1</em> was overexpressed in D5 but not in D8. The presence of LmALS1 mutants (LmALS1-Thr197 and LmALS1- Leu574), along with LmALS2, LmALS3, and their subunits, contribute to the resistance phenotype by increasing bonding energies, weakening hydrogen bonds, or decreasing protein binding pocket volumes and surface area. Additionally, D5 and D8 populations exhibited multiple resistance (&gt;40-fold) to three other ALS inhibitors: pyroxsulam, flucarbazone-sodium, and mesosulfuron-methyl. Pre-treatment with malathion and 4-chloro-7-nitrobenzoxadiazole (cytochrome P450 monooxygenase and glutathione S-transferase inhibitors respectively) reversed the resistance of the D8 population and partially reversed the resistance of the D5 population to imazamox. This study characterizes ALS genes and extends our knowledge into the ALS resistance mechanisms involved in <em>L. multiflorum</em>. It also deepens our understanding of the complex diversification resistance mechanisms, thereby facilitating advances in weed resistance management strategies in wheat fields.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"Article 109324"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum\",\"authors\":\"Hongle Xu ,&nbsp;Jingping Cheng ,&nbsp;Qiuli Leng ,&nbsp;Ran Cao ,&nbsp;Wangcang Su ,&nbsp;Lanlan Sun ,&nbsp;Fei Xue ,&nbsp;Yun Han ,&nbsp;Renhai Wu\",\"doi\":\"10.1016/j.plaphy.2024.109324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Combining imidazolinone-tolerant wheat with imazamox presents an effective solution to combat weed resistance. However, <em>Lolium multiflorum</em>, a troublesome resistant weed infesting wheat fields, may have developed resistance to imazamox, and the potential resistance mechanisms are intriguing. In this study, we explored the susceptibility of <em>L. multiflorum</em> to imazamox and investigated the resistance mechanisms, including the contribution of the target enzyme acetolactate synthase (ALS) to resistance and the presence of non-target-site resistance (NTSR). Eight L. <em>multiflorum</em> populations suspected of being resistant to imazamox were collected, and six populations exhibited resistance, ranging from 2.45-fold to 16.32-fold. The <em>LmALS1</em> gene from susceptible population D3 plants and multiple copies of the LmALS gene (<em>LmALS1</em>, <em>LmALS2</em>, <em>LmALS2α</em>, <em>LmALS3</em>, <em>LmALS3α</em>, <em>LmALS3β</em>) from resistant populations D5 and D8 plants were separately amplified. Two mutations (Pro/Gln197 to Thr, Trp574 to Leu) were found in LmALS1 in the resistant populations. Compared to D3, <em>LmALS1</em> was overexpressed in D5 but not in D8. The presence of LmALS1 mutants (LmALS1-Thr197 and LmALS1- Leu574), along with LmALS2, LmALS3, and their subunits, contribute to the resistance phenotype by increasing bonding energies, weakening hydrogen bonds, or decreasing protein binding pocket volumes and surface area. Additionally, D5 and D8 populations exhibited multiple resistance (&gt;40-fold) to three other ALS inhibitors: pyroxsulam, flucarbazone-sodium, and mesosulfuron-methyl. Pre-treatment with malathion and 4-chloro-7-nitrobenzoxadiazole (cytochrome P450 monooxygenase and glutathione S-transferase inhibitors respectively) reversed the resistance of the D8 population and partially reversed the resistance of the D5 population to imazamox. This study characterizes ALS genes and extends our knowledge into the ALS resistance mechanisms involved in <em>L. multiflorum</em>. It also deepens our understanding of the complex diversification resistance mechanisms, thereby facilitating advances in weed resistance management strategies in wheat fields.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"Article 109324\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824009926\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009926","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将耐咪唑啉酮的小麦与咪草烟结合使用,是对抗杂草抗性的有效解决方案。然而,小麦田中的一种棘手的抗性杂草--多花狼尾草(Lolium multiflorum)可能已经对咪草烟产生了抗性,其潜在的抗性机理令人好奇。在这项研究中,我们探讨了多花禾草属(L. multiflorum)对咪草胺的敏感性,并研究了其抗性机理,包括靶标酶乙酰乳酸合成酶(ALS)对抗性的贡献以及非靶标抗性(NTSR)的存在。研究人员收集了 8 个疑似对咪鲜胺具有抗性的多花禾草属种群,其中 6 个种群表现出抗性,抗性程度从 2.45 倍到 16.32 倍不等。分别扩增了易感种群 D3 植株的 LmALS1 基因和抗性种群 D5 和 D8 植株的多个 LmALS 基因拷贝(LmALS1、LmALS2、LmALS2α、LmALS3、LmALS3α、LmALS3β)。在抗性群体的 LmALS1 中发现了两个突变(Pro/Gln197 变 Thr,Trp574 变 Leu)。与 D3 相比,LmALS1 在 D5 中过表达,而在 D8 中则没有。LmALS1 突变体(LmALS1-Thr197 和 LmALS1-Leu574)以及 LmALS2、LmALS3 及其亚基的存在,通过增加键能、削弱氢键或减少蛋白质结合袋的体积和表面积而导致抗性表型。此外,D5 和 D8 群体还对其他三种 ALS 抑制剂表现出多重抗性(40 倍):吡蚜酮、氟唑草酮钠和甲磺隆。马拉硫磷和 4-氯-7-硝基苯并噁二唑(分别是细胞色素 P450 单氧化酶和谷胱甘肽 S 转移酶抑制剂)的预处理逆转了 D8 群体的抗药性,并部分逆转了 D5 群体对咪鲜胺的抗药性。这项研究描述了 ALS 基因的特征,扩展了我们对多花植物 ALS 抗性机制的认识。它还加深了我们对复杂的多样化抗性机制的理解,从而促进了麦田杂草抗性管理策略的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum
Combining imidazolinone-tolerant wheat with imazamox presents an effective solution to combat weed resistance. However, Lolium multiflorum, a troublesome resistant weed infesting wheat fields, may have developed resistance to imazamox, and the potential resistance mechanisms are intriguing. In this study, we explored the susceptibility of L. multiflorum to imazamox and investigated the resistance mechanisms, including the contribution of the target enzyme acetolactate synthase (ALS) to resistance and the presence of non-target-site resistance (NTSR). Eight L. multiflorum populations suspected of being resistant to imazamox were collected, and six populations exhibited resistance, ranging from 2.45-fold to 16.32-fold. The LmALS1 gene from susceptible population D3 plants and multiple copies of the LmALS gene (LmALS1, LmALS2, LmALS2α, LmALS3, LmALS3α, LmALS3β) from resistant populations D5 and D8 plants were separately amplified. Two mutations (Pro/Gln197 to Thr, Trp574 to Leu) were found in LmALS1 in the resistant populations. Compared to D3, LmALS1 was overexpressed in D5 but not in D8. The presence of LmALS1 mutants (LmALS1-Thr197 and LmALS1- Leu574), along with LmALS2, LmALS3, and their subunits, contribute to the resistance phenotype by increasing bonding energies, weakening hydrogen bonds, or decreasing protein binding pocket volumes and surface area. Additionally, D5 and D8 populations exhibited multiple resistance (>40-fold) to three other ALS inhibitors: pyroxsulam, flucarbazone-sodium, and mesosulfuron-methyl. Pre-treatment with malathion and 4-chloro-7-nitrobenzoxadiazole (cytochrome P450 monooxygenase and glutathione S-transferase inhibitors respectively) reversed the resistance of the D8 population and partially reversed the resistance of the D5 population to imazamox. This study characterizes ALS genes and extends our knowledge into the ALS resistance mechanisms involved in L. multiflorum. It also deepens our understanding of the complex diversification resistance mechanisms, thereby facilitating advances in weed resistance management strategies in wheat fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
FAD and NADPH binding sites of YUCCA6 are essential for chaperone activity and oxidative stress tolerance in Arabidopsis thaliana Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum Possible lessons of a model experiment: To what extent can UV activate the production of leaf phenolics in indoor plant cultivation? Development, characteristics, and gene expression profiles of a chromosomal deletion line of Brassica juncea (AABB, 2n=36) with apetalous feature derived from interspecific hybridization Exogenous methyl jasmonate (MeJA) mediated carbohydrate metabolism in apple fruit during ripening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1