生物论文 12/2024

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY BioEssays Pub Date : 2024-11-26 DOI:10.1002/bies.202470019
{"title":"生物论文 12/2024","authors":"","doi":"10.1002/bies.202470019","DOIUrl":null,"url":null,"abstract":"<p>Human pluripotent stem cells can differentiate to all cells of the body, including those of the heart. The heart contains multiple cell types but the contractile cells are called cardiomyocytes. In article 2400078, Christine Mummery describes her serendipitous finding on how to induce differentiation of human embryonic stem cells into cardiomyocytes by co-culture with visceral endoderm. This was later reproduced in human induced pluripotent stem cells using growth factors. The contractile apparatus of cardiomyocytes, which consists of structures called sarcomeres, is clearly evident in these cells after antibody staining. hiPSC can be derived from patients with different cardiac diseases. Cardiomyocytes from these hiPSC often capture patient phenotypes. This has led both to new insights into mechanisms underlying genetic cardiac diseases, like myopathies or arrhythmias, and created opportunities for discovering new drugs to treat these conditions and to assess their cardiac safety, without using animal models.</p><p>The image shows immunofluorescent staining of sarcomeres, the contractile units of the human heart, in cardiomycytes derived from human induced pluripotent stem cells. Staining is for cardiac Troponin T (green) and α-sarcomeric actinin (red). Nuclei are stained blue with Hoechst. Credit to Viviana Meraviglia.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":"46 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470019","citationCount":"0","resultStr":"{\"title\":\"BioEssays 12/2024\",\"authors\":\"\",\"doi\":\"10.1002/bies.202470019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human pluripotent stem cells can differentiate to all cells of the body, including those of the heart. The heart contains multiple cell types but the contractile cells are called cardiomyocytes. In article 2400078, Christine Mummery describes her serendipitous finding on how to induce differentiation of human embryonic stem cells into cardiomyocytes by co-culture with visceral endoderm. This was later reproduced in human induced pluripotent stem cells using growth factors. The contractile apparatus of cardiomyocytes, which consists of structures called sarcomeres, is clearly evident in these cells after antibody staining. hiPSC can be derived from patients with different cardiac diseases. Cardiomyocytes from these hiPSC often capture patient phenotypes. This has led both to new insights into mechanisms underlying genetic cardiac diseases, like myopathies or arrhythmias, and created opportunities for discovering new drugs to treat these conditions and to assess their cardiac safety, without using animal models.</p><p>The image shows immunofluorescent staining of sarcomeres, the contractile units of the human heart, in cardiomycytes derived from human induced pluripotent stem cells. Staining is for cardiac Troponin T (green) and α-sarcomeric actinin (red). Nuclei are stained blue with Hoechst. Credit to Viviana Meraviglia.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":9264,\"journal\":{\"name\":\"BioEssays\",\"volume\":\"46 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEssays\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bies.202470019\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bies.202470019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类多能干细胞可以分化成身体的所有细胞,包括心脏细胞。心脏包含多种细胞类型,但收缩细胞被称为心肌细胞。在文章2400078中,Christine Mummery描述了她如何通过与内脏内胚层共同培养,诱导人类胚胎干细胞分化为心肌细胞的偶然发现。后来,她利用生长因子在人类诱导多能干细胞中复制了这一发现。经抗体染色后,心肌细胞的收缩器(由称为肌节的结构组成)在这些细胞中清晰可见。来自这些 hiPSC 的心肌细胞往往能捕捉到患者的表型。这既使人们对遗传性心脏疾病(如心肌病或心律失常)的潜在机制有了新的认识,也为发现治疗这些疾病的新药和评估其对心脏的安全性创造了机会,而无需使用动物模型。染色为心肌肌钙蛋白T(绿色)和α-肉瘤肌动蛋白(红色)。细胞核用 Hoechst 染色为蓝色。归功于 Viviana Meraviglia。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioEssays 12/2024

Human pluripotent stem cells can differentiate to all cells of the body, including those of the heart. The heart contains multiple cell types but the contractile cells are called cardiomyocytes. In article 2400078, Christine Mummery describes her serendipitous finding on how to induce differentiation of human embryonic stem cells into cardiomyocytes by co-culture with visceral endoderm. This was later reproduced in human induced pluripotent stem cells using growth factors. The contractile apparatus of cardiomyocytes, which consists of structures called sarcomeres, is clearly evident in these cells after antibody staining. hiPSC can be derived from patients with different cardiac diseases. Cardiomyocytes from these hiPSC often capture patient phenotypes. This has led both to new insights into mechanisms underlying genetic cardiac diseases, like myopathies or arrhythmias, and created opportunities for discovering new drugs to treat these conditions and to assess their cardiac safety, without using animal models.

The image shows immunofluorescent staining of sarcomeres, the contractile units of the human heart, in cardiomycytes derived from human induced pluripotent stem cells. Staining is for cardiac Troponin T (green) and α-sarcomeric actinin (red). Nuclei are stained blue with Hoechst. Credit to Viviana Meraviglia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEssays
BioEssays 生物-生化与分子生物学
CiteScore
7.30
自引率
2.50%
发文量
167
审稿时长
4-8 weeks
期刊介绍: molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.
期刊最新文献
Assessing Human Ribosomal DNA Variation and Its Association With Phenotypic Outcomes. Mechanisms of Lipid-Associated Macrophage Accrual in Metabolically Stressed Adipose Tissue. Nucleic Acid Aptamer-Based Sensors for Bacteria Detection: A Review. Metabolic Dysregulation as a Central Mechanism in 16p11.2 Deletion Syndrome: A Multigenic Perspective on Clinical Variability and Therapeutic Opportunities. Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1