通过机器学习增强多性状基因组预测,优化大麻中的大麻素含量。

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-01-01 Epub Date: 2024-11-27 DOI:10.1111/tpj.17164
Mohsen Yoosefzadeh Najafabadi, Davoud Torkamaneh
{"title":"通过机器学习增强多性状基因组预测,优化大麻中的大麻素含量。","authors":"Mohsen Yoosefzadeh Najafabadi, Davoud Torkamaneh","doi":"10.1111/tpj.17164","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS and ML to optimize cannabinoid profiles in cannabis breeding. We analyzed a representative population of drug-type cannabis accessions, quantifying major cannabinoids and utilizing high-density genotyping with 250K SNPs for GS. Our evaluations of various models-including ML algorithms, statistical methods, and Bayesian approaches-highlighted Random Forest's superior predictive accuracy for single and multi-trait genomic predictions, particularly for THC, CBD, and their precursors. Multi-trait analyses elucidated complex genetic interdependencies and identified key loci crucial to cannabinoid biosynthesis. These results demonstrate the efficacy of integrating GS and ML in developing cannabis varieties with tailored cannabinoid profiles.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":"e17164"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in cannabis.\",\"authors\":\"Mohsen Yoosefzadeh Najafabadi, Davoud Torkamaneh\",\"doi\":\"10.1111/tpj.17164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS and ML to optimize cannabinoid profiles in cannabis breeding. We analyzed a representative population of drug-type cannabis accessions, quantifying major cannabinoids and utilizing high-density genotyping with 250K SNPs for GS. Our evaluations of various models-including ML algorithms, statistical methods, and Bayesian approaches-highlighted Random Forest's superior predictive accuracy for single and multi-trait genomic predictions, particularly for THC, CBD, and their precursors. Multi-trait analyses elucidated complex genetic interdependencies and identified key loci crucial to cannabinoid biosynthesis. These results demonstrate the efficacy of integrating GS and ML in developing cannabis varieties with tailored cannabinoid profiles.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"e17164\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17164\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17164","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大麻(Cannabis sativa L.)以其药用和精神活性特性而闻名,近来经历了快速的市场扩张,但由于历史上的禁令,对其基本生物学特性的研究仍然不足。这项开创性的研究利用 GS 和 ML 来优化大麻育种中的大麻素特征。我们分析了具有代表性的毒品型大麻品种,对主要大麻素进行了量化,并利用 250K SNPs 的高密度基因分型进行了 GS 分析。我们对各种模型(包括 ML 算法、统计方法和贝叶斯方法)进行了评估,结果表明随机森林在单性状和多性状基因组预测方面具有卓越的预测准确性,尤其是对四氢大麻酚、大麻二酚及其前体的预测。多性状分析阐明了复杂的遗传相互依存关系,并确定了对大麻素生物合成至关重要的关键基因位点。这些结果表明,在开发具有量身定制的大麻素特征的大麻品种时,将 GS 和 ML 相结合是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in cannabis.

Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS and ML to optimize cannabinoid profiles in cannabis breeding. We analyzed a representative population of drug-type cannabis accessions, quantifying major cannabinoids and utilizing high-density genotyping with 250K SNPs for GS. Our evaluations of various models-including ML algorithms, statistical methods, and Bayesian approaches-highlighted Random Forest's superior predictive accuracy for single and multi-trait genomic predictions, particularly for THC, CBD, and their precursors. Multi-trait analyses elucidated complex genetic interdependencies and identified key loci crucial to cannabinoid biosynthesis. These results demonstrate the efficacy of integrating GS and ML in developing cannabis varieties with tailored cannabinoid profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
Detection of quantitative trait loci for rice root systems grown in paddies based on nondestructive phenotyping using X-ray computed tomography. Enhanced salt stress tolerance in plants without growth penalty through increased photosynthesis activity by plastocyanin from Antarctic moss. GhTBL3 is required for fiber secondary cell wall (SCW) formation via maintaining acetylation of xylan in cotton. ERD14 regulation by the HY5- or HY5-MED2 module mediates the cold signal transduction of asparagus bean. LncRNA81246 regulates resistance against tea leaf spot by interrupting the miR164d-mediated degradation of NAC1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1