{"title":"利用便携式 LED 荧光光谱仪和化学计量学快速鉴定无刺蜂蜂蜜 (SBH)。","authors":"Diding Suhandy, Dimas Firmanda Al Riza, Meinilwita Yulia, Kusumiyati Kusumiyati, Mareli Telaumbanua, Hirotaka Naito","doi":"10.3390/foods13223648","DOIUrl":null,"url":null,"abstract":"<p><p>Indonesian stingless bee honey (SBH) of <i>Geniotrigona thoracica</i> is popular and traded at an expensive price. Brown rice syrup (RS) is frequently used as a cheap adulterant for an economically motivated adulteration (EMA) in SBH. In this study, authentic Indonesian <i>Geniotrigona thoracica</i> SBH of <i>Acacia mangium</i> (<i>n</i> = 100), adulterated SBH (<i>n</i> = 120), fake SBH (<i>n</i> = 100), and RS (<i>n</i> = 200) were prepared. In short, 2 mL of each sample was dropped directly into an innovative sample holder without any sample preparation including no dilution. Fluorescence intensity was acquired using a fluorescence spectrometer. This portable instrument is equipped with a 365 nm LED lamp as the fixed excitation source. Principal component analysis (PCA) was calculated for the smoothed spectral data. The results showed that the authentic SBH and non-SBH (adulterated SBH, fake SBH, and RS) samples could be well separated using the smoothed spectral data. The cumulative percentage variance of the first two PCs, 98.4749% and 98.4425%, was obtained for calibration and validation, respectively. The highest prediction accuracy was 99.5% and was obtained using principal component analysis-linear discriminant analysis (PCA-LDA). The best partial least square (PLS) calibration was obtained using the combined interval with R<sup>2</sup><sub>cal</sub> = 0.898 and R<sup>2</sup><sub>val</sub> = 0.874 for calibration and validation, respectively. In the prediction, the developed model could predict the adulteration level in the adulterated honey samples with an acceptable ratio of prediction to deviation (RPD) = 2.282, and range error ratio (RER) = 6.612.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics.\",\"authors\":\"Diding Suhandy, Dimas Firmanda Al Riza, Meinilwita Yulia, Kusumiyati Kusumiyati, Mareli Telaumbanua, Hirotaka Naito\",\"doi\":\"10.3390/foods13223648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indonesian stingless bee honey (SBH) of <i>Geniotrigona thoracica</i> is popular and traded at an expensive price. Brown rice syrup (RS) is frequently used as a cheap adulterant for an economically motivated adulteration (EMA) in SBH. In this study, authentic Indonesian <i>Geniotrigona thoracica</i> SBH of <i>Acacia mangium</i> (<i>n</i> = 100), adulterated SBH (<i>n</i> = 120), fake SBH (<i>n</i> = 100), and RS (<i>n</i> = 200) were prepared. In short, 2 mL of each sample was dropped directly into an innovative sample holder without any sample preparation including no dilution. Fluorescence intensity was acquired using a fluorescence spectrometer. This portable instrument is equipped with a 365 nm LED lamp as the fixed excitation source. Principal component analysis (PCA) was calculated for the smoothed spectral data. The results showed that the authentic SBH and non-SBH (adulterated SBH, fake SBH, and RS) samples could be well separated using the smoothed spectral data. The cumulative percentage variance of the first two PCs, 98.4749% and 98.4425%, was obtained for calibration and validation, respectively. The highest prediction accuracy was 99.5% and was obtained using principal component analysis-linear discriminant analysis (PCA-LDA). The best partial least square (PLS) calibration was obtained using the combined interval with R<sup>2</sup><sub>cal</sub> = 0.898 and R<sup>2</sup><sub>val</sub> = 0.874 for calibration and validation, respectively. In the prediction, the developed model could predict the adulteration level in the adulterated honey samples with an acceptable ratio of prediction to deviation (RPD) = 2.282, and range error ratio (RER) = 6.612.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"13 22\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13223648\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13223648","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics.
Indonesian stingless bee honey (SBH) of Geniotrigona thoracica is popular and traded at an expensive price. Brown rice syrup (RS) is frequently used as a cheap adulterant for an economically motivated adulteration (EMA) in SBH. In this study, authentic Indonesian Geniotrigona thoracica SBH of Acacia mangium (n = 100), adulterated SBH (n = 120), fake SBH (n = 100), and RS (n = 200) were prepared. In short, 2 mL of each sample was dropped directly into an innovative sample holder without any sample preparation including no dilution. Fluorescence intensity was acquired using a fluorescence spectrometer. This portable instrument is equipped with a 365 nm LED lamp as the fixed excitation source. Principal component analysis (PCA) was calculated for the smoothed spectral data. The results showed that the authentic SBH and non-SBH (adulterated SBH, fake SBH, and RS) samples could be well separated using the smoothed spectral data. The cumulative percentage variance of the first two PCs, 98.4749% and 98.4425%, was obtained for calibration and validation, respectively. The highest prediction accuracy was 99.5% and was obtained using principal component analysis-linear discriminant analysis (PCA-LDA). The best partial least square (PLS) calibration was obtained using the combined interval with R2cal = 0.898 and R2val = 0.874 for calibration and validation, respectively. In the prediction, the developed model could predict the adulteration level in the adulterated honey samples with an acceptable ratio of prediction to deviation (RPD) = 2.282, and range error ratio (RER) = 6.612.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds