Véronique Paban, Lewis Feraud, Arnaud Weills, Fabien Duplan
{"title":"探索神经反馈作为主观认知能力下降的治疗干预手段。","authors":"Véronique Paban, Lewis Feraud, Arnaud Weills, Fabien Duplan","doi":"10.1111/ejn.16621","DOIUrl":null,"url":null,"abstract":"<p><strong>Impact statement: </strong>This study addresses the pressing issue of subjective cognitive decline in aging populations by investigating neurofeedback (NFB) as a potential early therapeutic intervention. By evaluating the efficacy of individualised NFB training compared to standard protocols, tailored to each participant's EEG profile, it provides novel insights into personalised treatment approaches. The incorporation of innovative elements and rigorous analytical techniques contributes to advancing our understanding of NFB's modulatory effects on EEG frequencies and cognitive function in aging individuals.</p><p><strong>Abstract: </strong>In the context of an aging population, concerns surrounding memory function become increasingly prevalent, particularly as individuals transition into middle age and beyond. This study investigated neurofeedback (NFB) as a potential early therapeutic intervention to address subjective cognitive decline (SCD) in aging populations. NFB, a biofeedback technique utilising a brain-computer interface, has demonstrated promise in the treatment of various neurological and psychological conditions. Here, we evaluated the efficacy of individualised NFB training, tailored to each participant's EEG profile, compared to a standard NFB training protocol aimed at increasing peak alpha frequency power, in enhancing cognitive function among individuals experiencing SCD. Our NFB protocol incorporated innovative elements, including the implementation of a criterion for learning success to ensure consistent achievement levels by the conclusion of the training sessions. Additionally, we introduced a non-learner group to account for individuals who do not demonstrate the expected proficiency in NFB regulation. Analysis of electroencephalographic (EEG) signals during NFB sessions, as well as before and after training, provides insights into the modulatory effects of NFB on EEG frequencies. Contrary to expectations, our rigorous analysis revealed that the ability of individuals with SCD to modulate EEG signal power and duration at specific frequencies was not exclusive to the intended frequency target. Furthermore, examination of EEG signals recorded using a high-density EEG showed no discernible alteration in signal power between pre- and post-NFB training sessions. Similarly, no significant effects were observed on questionnaire scores when comparing pre- and post-NFB training assessments.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring neurofeedback as a therapeutic intervention for subjective cognitive decline.\",\"authors\":\"Véronique Paban, Lewis Feraud, Arnaud Weills, Fabien Duplan\",\"doi\":\"10.1111/ejn.16621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Impact statement: </strong>This study addresses the pressing issue of subjective cognitive decline in aging populations by investigating neurofeedback (NFB) as a potential early therapeutic intervention. By evaluating the efficacy of individualised NFB training compared to standard protocols, tailored to each participant's EEG profile, it provides novel insights into personalised treatment approaches. The incorporation of innovative elements and rigorous analytical techniques contributes to advancing our understanding of NFB's modulatory effects on EEG frequencies and cognitive function in aging individuals.</p><p><strong>Abstract: </strong>In the context of an aging population, concerns surrounding memory function become increasingly prevalent, particularly as individuals transition into middle age and beyond. This study investigated neurofeedback (NFB) as a potential early therapeutic intervention to address subjective cognitive decline (SCD) in aging populations. NFB, a biofeedback technique utilising a brain-computer interface, has demonstrated promise in the treatment of various neurological and psychological conditions. Here, we evaluated the efficacy of individualised NFB training, tailored to each participant's EEG profile, compared to a standard NFB training protocol aimed at increasing peak alpha frequency power, in enhancing cognitive function among individuals experiencing SCD. Our NFB protocol incorporated innovative elements, including the implementation of a criterion for learning success to ensure consistent achievement levels by the conclusion of the training sessions. Additionally, we introduced a non-learner group to account for individuals who do not demonstrate the expected proficiency in NFB regulation. Analysis of electroencephalographic (EEG) signals during NFB sessions, as well as before and after training, provides insights into the modulatory effects of NFB on EEG frequencies. Contrary to expectations, our rigorous analysis revealed that the ability of individuals with SCD to modulate EEG signal power and duration at specific frequencies was not exclusive to the intended frequency target. Furthermore, examination of EEG signals recorded using a high-density EEG showed no discernible alteration in signal power between pre- and post-NFB training sessions. Similarly, no significant effects were observed on questionnaire scores when comparing pre- and post-NFB training assessments.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ejn.16621\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejn.16621","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Exploring neurofeedback as a therapeutic intervention for subjective cognitive decline.
Impact statement: This study addresses the pressing issue of subjective cognitive decline in aging populations by investigating neurofeedback (NFB) as a potential early therapeutic intervention. By evaluating the efficacy of individualised NFB training compared to standard protocols, tailored to each participant's EEG profile, it provides novel insights into personalised treatment approaches. The incorporation of innovative elements and rigorous analytical techniques contributes to advancing our understanding of NFB's modulatory effects on EEG frequencies and cognitive function in aging individuals.
Abstract: In the context of an aging population, concerns surrounding memory function become increasingly prevalent, particularly as individuals transition into middle age and beyond. This study investigated neurofeedback (NFB) as a potential early therapeutic intervention to address subjective cognitive decline (SCD) in aging populations. NFB, a biofeedback technique utilising a brain-computer interface, has demonstrated promise in the treatment of various neurological and psychological conditions. Here, we evaluated the efficacy of individualised NFB training, tailored to each participant's EEG profile, compared to a standard NFB training protocol aimed at increasing peak alpha frequency power, in enhancing cognitive function among individuals experiencing SCD. Our NFB protocol incorporated innovative elements, including the implementation of a criterion for learning success to ensure consistent achievement levels by the conclusion of the training sessions. Additionally, we introduced a non-learner group to account for individuals who do not demonstrate the expected proficiency in NFB regulation. Analysis of electroencephalographic (EEG) signals during NFB sessions, as well as before and after training, provides insights into the modulatory effects of NFB on EEG frequencies. Contrary to expectations, our rigorous analysis revealed that the ability of individuals with SCD to modulate EEG signal power and duration at specific frequencies was not exclusive to the intended frequency target. Furthermore, examination of EEG signals recorded using a high-density EEG showed no discernible alteration in signal power between pre- and post-NFB training sessions. Similarly, no significant effects were observed on questionnaire scores when comparing pre- and post-NFB training assessments.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.