神经紧张素共轭聚合物多孔微粒抑制炎症并改善血管生成,有助于糖尿病伤口愈合

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-11-27 DOI:10.1002/mabi.202400406
Saibhargav Narisepalli, Shubham A Salunkhe, Deepak Chitkara, Anupama Mittal
{"title":"神经紧张素共轭聚合物多孔微粒抑制炎症并改善血管生成,有助于糖尿病伤口愈合","authors":"Saibhargav Narisepalli, Shubham A Salunkhe, Deepak Chitkara, Anupama Mittal","doi":"10.1002/mabi.202400406","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotensin (NT), a bioactive tridecapeptide aids in diabetic wound healing by modulating inflammation and angiogenesis. However, its rapid degradation in peptidase-rich wound environment (plasma half-life <2 min) limits its efficacy. To address this, neurotensin-conjugated polymeric porous microparticles (NT-PMP) were developed and loaded in gelatin (hydrogel 15% w/v) for topical application, enabling sustained NT release to enhance therapeutic outcomes. NT-PMP exhibited a size range of 60 - 240 µm (mean: 120.63 ± 40.71 µm) and pore size of 5 - 16 µm (average: 10.68 ± 3.47 µm). In vitro studies demonstrated cytocompatibility of NT-PMP in fibroblasts and reduced TNF-α levels in inflammation-induced macrophages (1256 ± 167.02 pg/ml). Further NT-PMP scaffold depicted excellent cell adhesion and migration properties upon seeding of dermal fibroblasts on surface of PMPs. In vivo studies in diabetic wound rat model demonstrated effective wound management, characterized by notable regenerative and healing attributes in the presence of NT-PMP. This included complete re-epithelialization, reducing pro-inflammatory cytokine (TNF-α), and enhancing VEGF expression, ultimately leading to the development of a well-organized collagen matrix in diabetic wounds upon application of NT-PMP gel.Altogether, NT conjugated PMP loaded in hydrogel demonstrated significant regenerative and healing properties, suggesting its potential as an alternative treatment for diabetic wounds.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400406"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurotensin Conjugated Polymeric Porous Microparticles Suppress Inflammation and Improve Angiogenesis Aiding in Diabetic Wound Healing.\",\"authors\":\"Saibhargav Narisepalli, Shubham A Salunkhe, Deepak Chitkara, Anupama Mittal\",\"doi\":\"10.1002/mabi.202400406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurotensin (NT), a bioactive tridecapeptide aids in diabetic wound healing by modulating inflammation and angiogenesis. However, its rapid degradation in peptidase-rich wound environment (plasma half-life <2 min) limits its efficacy. To address this, neurotensin-conjugated polymeric porous microparticles (NT-PMP) were developed and loaded in gelatin (hydrogel 15% w/v) for topical application, enabling sustained NT release to enhance therapeutic outcomes. NT-PMP exhibited a size range of 60 - 240 µm (mean: 120.63 ± 40.71 µm) and pore size of 5 - 16 µm (average: 10.68 ± 3.47 µm). In vitro studies demonstrated cytocompatibility of NT-PMP in fibroblasts and reduced TNF-α levels in inflammation-induced macrophages (1256 ± 167.02 pg/ml). Further NT-PMP scaffold depicted excellent cell adhesion and migration properties upon seeding of dermal fibroblasts on surface of PMPs. In vivo studies in diabetic wound rat model demonstrated effective wound management, characterized by notable regenerative and healing attributes in the presence of NT-PMP. This included complete re-epithelialization, reducing pro-inflammatory cytokine (TNF-α), and enhancing VEGF expression, ultimately leading to the development of a well-organized collagen matrix in diabetic wounds upon application of NT-PMP gel.Altogether, NT conjugated PMP loaded in hydrogel demonstrated significant regenerative and healing properties, suggesting its potential as an alternative treatment for diabetic wounds.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400406\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400406\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400406","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经营养素(NT)是一种具有生物活性的十三肽,可通过调节炎症和血管生成来帮助糖尿病伤口愈合。然而,它在富含肽酶的伤口环境中会迅速降解(血浆半衰期为 10 天)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurotensin Conjugated Polymeric Porous Microparticles Suppress Inflammation and Improve Angiogenesis Aiding in Diabetic Wound Healing.

Neurotensin (NT), a bioactive tridecapeptide aids in diabetic wound healing by modulating inflammation and angiogenesis. However, its rapid degradation in peptidase-rich wound environment (plasma half-life <2 min) limits its efficacy. To address this, neurotensin-conjugated polymeric porous microparticles (NT-PMP) were developed and loaded in gelatin (hydrogel 15% w/v) for topical application, enabling sustained NT release to enhance therapeutic outcomes. NT-PMP exhibited a size range of 60 - 240 µm (mean: 120.63 ± 40.71 µm) and pore size of 5 - 16 µm (average: 10.68 ± 3.47 µm). In vitro studies demonstrated cytocompatibility of NT-PMP in fibroblasts and reduced TNF-α levels in inflammation-induced macrophages (1256 ± 167.02 pg/ml). Further NT-PMP scaffold depicted excellent cell adhesion and migration properties upon seeding of dermal fibroblasts on surface of PMPs. In vivo studies in diabetic wound rat model demonstrated effective wound management, characterized by notable regenerative and healing attributes in the presence of NT-PMP. This included complete re-epithelialization, reducing pro-inflammatory cytokine (TNF-α), and enhancing VEGF expression, ultimately leading to the development of a well-organized collagen matrix in diabetic wounds upon application of NT-PMP gel.Altogether, NT conjugated PMP loaded in hydrogel demonstrated significant regenerative and healing properties, suggesting its potential as an alternative treatment for diabetic wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
Development and Degradation Study of PLA-Based Medical Implant Markers for Magnetic Particle Imaging. Enhanced Intracellular Protein Activity by Caveolae-Mediated Endocytosis of Conjugated Polymer/Protein Complexes. Calixarene Modification Strategy for Efficient Intracellular Protein Delivery. Hierarchical Self-Assembly of Short Peptides: Nanostructure Formation, Function Tailoring, and Applications. Inhalable Nano Formulation of Cabazitaxel: A Comparative Study with Intravenous Route.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1