{"title":"具有双峰晶粒尺寸分布的镁合金力学性能的微观力学模型","authors":"Shaojie Li, Jianfeng Jin, Hao Sun, Yongbo Wang, Yuping Ren, Mingtao Wang, Gaowu Qin","doi":"10.3390/nano14221807","DOIUrl":null,"url":null,"abstract":"<p><p>Bimodal grain structure (BGS) Mg alloys containing a high fraction of fine grains (FGs) and a low fraction of coarse grains (CGs) show a good combination of strength and plasticity. Here, taking the ZK60 alloy as an example, the influences of CG size, volume fraction, and texture intensity on mechanical properties and the hetero-deformation-induced (HDI) effect were examined using the Mori-Tanaka mean-field method combined with strain gradient theory of plasticity. The results indicate that the overall mechanical properties decrease with an increase in CG size because the limited HDI effect cannot compensate for the strength and plasticity decrease derived from larger CGs. A higher aspect ratio of CG along the loading direction can weaken the HDI effect and subsequently reduce the overall mechanical properties. Optimal comprehensive mechanical properties can be achieved when the CG volume fraction is approximately 30%. Furthermore, an increasing basal texture intensity in CG results in higher yield strength and lower ultimate tensile strength, while the uniform elongation reaches a maximum value when ~60% of CGs possess hard orientations with Euler angles of (0~30°, 0°, 0°).</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597807/pdf/","citationCount":"0","resultStr":"{\"title\":\"Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution.\",\"authors\":\"Shaojie Li, Jianfeng Jin, Hao Sun, Yongbo Wang, Yuping Ren, Mingtao Wang, Gaowu Qin\",\"doi\":\"10.3390/nano14221807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bimodal grain structure (BGS) Mg alloys containing a high fraction of fine grains (FGs) and a low fraction of coarse grains (CGs) show a good combination of strength and plasticity. Here, taking the ZK60 alloy as an example, the influences of CG size, volume fraction, and texture intensity on mechanical properties and the hetero-deformation-induced (HDI) effect were examined using the Mori-Tanaka mean-field method combined with strain gradient theory of plasticity. The results indicate that the overall mechanical properties decrease with an increase in CG size because the limited HDI effect cannot compensate for the strength and plasticity decrease derived from larger CGs. A higher aspect ratio of CG along the loading direction can weaken the HDI effect and subsequently reduce the overall mechanical properties. Optimal comprehensive mechanical properties can be achieved when the CG volume fraction is approximately 30%. Furthermore, an increasing basal texture intensity in CG results in higher yield strength and lower ultimate tensile strength, while the uniform elongation reaches a maximum value when ~60% of CGs possess hard orientations with Euler angles of (0~30°, 0°, 0°).</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 22\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14221807\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14221807","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution.
Bimodal grain structure (BGS) Mg alloys containing a high fraction of fine grains (FGs) and a low fraction of coarse grains (CGs) show a good combination of strength and plasticity. Here, taking the ZK60 alloy as an example, the influences of CG size, volume fraction, and texture intensity on mechanical properties and the hetero-deformation-induced (HDI) effect were examined using the Mori-Tanaka mean-field method combined with strain gradient theory of plasticity. The results indicate that the overall mechanical properties decrease with an increase in CG size because the limited HDI effect cannot compensate for the strength and plasticity decrease derived from larger CGs. A higher aspect ratio of CG along the loading direction can weaken the HDI effect and subsequently reduce the overall mechanical properties. Optimal comprehensive mechanical properties can be achieved when the CG volume fraction is approximately 30%. Furthermore, an increasing basal texture intensity in CG results in higher yield strength and lower ultimate tensile strength, while the uniform elongation reaches a maximum value when ~60% of CGs possess hard orientations with Euler angles of (0~30°, 0°, 0°).
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.