Jan Van Eijgen, Lien Van Winckel, Henner Hanssen, Konstantin Kotliar, Thomas Vanassche, Emeline Van Craenenbroeck, Véronique Cornelissen, Amaryllis Van Craenenbroeck, Elisabeth Jones, Ingeborg Stalmans
{"title":"视网膜血管分析评估健康眼睛的微血管功能:对急性生理和病理应激反应的系统综述。","authors":"Jan Van Eijgen, Lien Van Winckel, Henner Hanssen, Konstantin Kotliar, Thomas Vanassche, Emeline Van Craenenbroeck, Véronique Cornelissen, Amaryllis Van Craenenbroeck, Elisabeth Jones, Ingeborg Stalmans","doi":"10.1016/j.survophthal.2024.11.008","DOIUrl":null,"url":null,"abstract":"<p><p>The retina allows noninvasive in vivo assessment of the microcirculation. Autoregulation of the retinal microvasculature meets the changing requirements of local metabolic demand and maintains adequate blood flow. Analysis of the retinal vascular reactivity contributes to the understanding of regulatory physiology and its relationship to the systemic microcirculation. We conducted a literature review on the effect of different acute stimuli onto the retinal vasculature was conducted in accordance with the PRISMA guidelines. A literature search between 1-1-2005 and 17-10-2022 was performed in Medline, Embase, Web of Science and the Cochrane Library. We report the retinal vascular behavior of healthy individuals in response to both physiological and pathological stressors in 106 included articles. Tables of methodological characteristics for each stressor are provided. Hypoxia, hypercapnia, high altitude, flicker light stimulation, rise of core temperature, blood pressure lowering, and the condition immediately after endurance exercise associate with larger retinal vessels. Hyperoxia, hypocapnia, blood pressure rise (Bayliss effect), and the condition during isometric exercise associate with smaller retinal vessels. The retinal vasculature is highly reactive to physiological and pathological stressors. This autoregulatory capacity is hypothesized to be a source of biomarkers for vascular health. Dynamic and static retinal vessel analysis are non-invasive methods to assess this (micro)vascular function. Exploring its diagnostic potential and application into clinical practice requires the development of standardized assessment methods, for which some recommendations are made.</p>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinal vessel analysis to assess microvascular function in the healthy eye: A systematic review on the response to acute physiological and pathological stressors.\",\"authors\":\"Jan Van Eijgen, Lien Van Winckel, Henner Hanssen, Konstantin Kotliar, Thomas Vanassche, Emeline Van Craenenbroeck, Véronique Cornelissen, Amaryllis Van Craenenbroeck, Elisabeth Jones, Ingeborg Stalmans\",\"doi\":\"10.1016/j.survophthal.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The retina allows noninvasive in vivo assessment of the microcirculation. Autoregulation of the retinal microvasculature meets the changing requirements of local metabolic demand and maintains adequate blood flow. Analysis of the retinal vascular reactivity contributes to the understanding of regulatory physiology and its relationship to the systemic microcirculation. We conducted a literature review on the effect of different acute stimuli onto the retinal vasculature was conducted in accordance with the PRISMA guidelines. A literature search between 1-1-2005 and 17-10-2022 was performed in Medline, Embase, Web of Science and the Cochrane Library. We report the retinal vascular behavior of healthy individuals in response to both physiological and pathological stressors in 106 included articles. Tables of methodological characteristics for each stressor are provided. Hypoxia, hypercapnia, high altitude, flicker light stimulation, rise of core temperature, blood pressure lowering, and the condition immediately after endurance exercise associate with larger retinal vessels. Hyperoxia, hypocapnia, blood pressure rise (Bayliss effect), and the condition during isometric exercise associate with smaller retinal vessels. The retinal vasculature is highly reactive to physiological and pathological stressors. This autoregulatory capacity is hypothesized to be a source of biomarkers for vascular health. Dynamic and static retinal vessel analysis are non-invasive methods to assess this (micro)vascular function. Exploring its diagnostic potential and application into clinical practice requires the development of standardized assessment methods, for which some recommendations are made.</p>\",\"PeriodicalId\":22102,\"journal\":{\"name\":\"Survey of ophthalmology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey of ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.survophthal.2024.11.008\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.survophthal.2024.11.008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Retinal vessel analysis to assess microvascular function in the healthy eye: A systematic review on the response to acute physiological and pathological stressors.
The retina allows noninvasive in vivo assessment of the microcirculation. Autoregulation of the retinal microvasculature meets the changing requirements of local metabolic demand and maintains adequate blood flow. Analysis of the retinal vascular reactivity contributes to the understanding of regulatory physiology and its relationship to the systemic microcirculation. We conducted a literature review on the effect of different acute stimuli onto the retinal vasculature was conducted in accordance with the PRISMA guidelines. A literature search between 1-1-2005 and 17-10-2022 was performed in Medline, Embase, Web of Science and the Cochrane Library. We report the retinal vascular behavior of healthy individuals in response to both physiological and pathological stressors in 106 included articles. Tables of methodological characteristics for each stressor are provided. Hypoxia, hypercapnia, high altitude, flicker light stimulation, rise of core temperature, blood pressure lowering, and the condition immediately after endurance exercise associate with larger retinal vessels. Hyperoxia, hypocapnia, blood pressure rise (Bayliss effect), and the condition during isometric exercise associate with smaller retinal vessels. The retinal vasculature is highly reactive to physiological and pathological stressors. This autoregulatory capacity is hypothesized to be a source of biomarkers for vascular health. Dynamic and static retinal vessel analysis are non-invasive methods to assess this (micro)vascular function. Exploring its diagnostic potential and application into clinical practice requires the development of standardized assessment methods, for which some recommendations are made.
期刊介绍:
Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.