Emna Harigua-Souiai, Ons Masmoudi, Samer Makni, Rafeh Oualha, Yosser Z. Abdelkrim, Sara Hamdi, Oussama Souiai, Ikram Guizani
{"title":"cidalsDB:人工智能赋能的抗病原治疗研究平台","authors":"Emna Harigua-Souiai, Ons Masmoudi, Samer Makni, Rafeh Oualha, Yosser Z. Abdelkrim, Sara Hamdi, Oussama Souiai, Ikram Guizani","doi":"10.1186/s13321-024-00929-7","DOIUrl":null,"url":null,"abstract":"<div><p>Computer-aided drug discovery (CADD) is nurtured by late advances in big data analytics and Artificial Intelligence (AI) towards enhanced drug discovery (DD) outcomes. In this context, reliable datasets are of utmost importance. We herein present <i>CidalsDB</i> a novel web server for AI-assisted DD against infectious pathogens, namely <i>Leishmania</i> parasites and Coronaviruses. We performed a literature search on molecules with validated anti-pathogen effects. Then, we consolidated these data with bioassays from PubChem. Finally, we constructed a database to store these datasets and make them accessible and ready-to-use for the scientific community through <i>CidalsDB</i>, a web-based interface. In a second step, we implemented and optimized four machine learning (ML) and three deep learning (DL) algorithms that optimally predicted the biological activity of molecules. Random Forests (RF), Multi-Layer Perceptron (MLP) and ChemBERTa were the best classifiers of anti-<i>Leishmania</i> molecules, while Gradient Boosting (GB), Graph-Convolutional Network (GCN) and ChemBERTa achieved the best performances on the Coronaviruses dataset. All six models were optimized and deployed through <i>CidalsDB</i> as anti-pathogen activity prediction models.</p><p><b>Scientific contribution</b></p><p>CidalsDB is an open access web-based tool that allows browsing and access to ready-to-use datasets of anti-pathogen molecules, alongside best performing AI models for biological activity prediction. It offers a democratized no-code platform for AI-based CADD, which shall foster innovation and collaboration within the DD community. <i>CidalsDB</i> is accessible through https://cidalsdb.streamlit.app/.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00929-7","citationCount":"0","resultStr":"{\"title\":\"cidalsDB: an AI-empowered platform for anti-pathogen therapeutics research\",\"authors\":\"Emna Harigua-Souiai, Ons Masmoudi, Samer Makni, Rafeh Oualha, Yosser Z. Abdelkrim, Sara Hamdi, Oussama Souiai, Ikram Guizani\",\"doi\":\"10.1186/s13321-024-00929-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computer-aided drug discovery (CADD) is nurtured by late advances in big data analytics and Artificial Intelligence (AI) towards enhanced drug discovery (DD) outcomes. In this context, reliable datasets are of utmost importance. We herein present <i>CidalsDB</i> a novel web server for AI-assisted DD against infectious pathogens, namely <i>Leishmania</i> parasites and Coronaviruses. We performed a literature search on molecules with validated anti-pathogen effects. Then, we consolidated these data with bioassays from PubChem. Finally, we constructed a database to store these datasets and make them accessible and ready-to-use for the scientific community through <i>CidalsDB</i>, a web-based interface. In a second step, we implemented and optimized four machine learning (ML) and three deep learning (DL) algorithms that optimally predicted the biological activity of molecules. Random Forests (RF), Multi-Layer Perceptron (MLP) and ChemBERTa were the best classifiers of anti-<i>Leishmania</i> molecules, while Gradient Boosting (GB), Graph-Convolutional Network (GCN) and ChemBERTa achieved the best performances on the Coronaviruses dataset. All six models were optimized and deployed through <i>CidalsDB</i> as anti-pathogen activity prediction models.</p><p><b>Scientific contribution</b></p><p>CidalsDB is an open access web-based tool that allows browsing and access to ready-to-use datasets of anti-pathogen molecules, alongside best performing AI models for biological activity prediction. It offers a democratized no-code platform for AI-based CADD, which shall foster innovation and collaboration within the DD community. <i>CidalsDB</i> is accessible through https://cidalsdb.streamlit.app/.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00929-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00929-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00929-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
cidalsDB: an AI-empowered platform for anti-pathogen therapeutics research
Computer-aided drug discovery (CADD) is nurtured by late advances in big data analytics and Artificial Intelligence (AI) towards enhanced drug discovery (DD) outcomes. In this context, reliable datasets are of utmost importance. We herein present CidalsDB a novel web server for AI-assisted DD against infectious pathogens, namely Leishmania parasites and Coronaviruses. We performed a literature search on molecules with validated anti-pathogen effects. Then, we consolidated these data with bioassays from PubChem. Finally, we constructed a database to store these datasets and make them accessible and ready-to-use for the scientific community through CidalsDB, a web-based interface. In a second step, we implemented and optimized four machine learning (ML) and three deep learning (DL) algorithms that optimally predicted the biological activity of molecules. Random Forests (RF), Multi-Layer Perceptron (MLP) and ChemBERTa were the best classifiers of anti-Leishmania molecules, while Gradient Boosting (GB), Graph-Convolutional Network (GCN) and ChemBERTa achieved the best performances on the Coronaviruses dataset. All six models were optimized and deployed through CidalsDB as anti-pathogen activity prediction models.
Scientific contribution
CidalsDB is an open access web-based tool that allows browsing and access to ready-to-use datasets of anti-pathogen molecules, alongside best performing AI models for biological activity prediction. It offers a democratized no-code platform for AI-based CADD, which shall foster innovation and collaboration within the DD community. CidalsDB is accessible through https://cidalsdb.streamlit.app/.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.