{"title":"利用电泳和石英晶体微天平仪器检测水中的纳米塑料。","authors":"Wei Yin Lim, Ee Von Lau, Narayanan Ramakrishnan","doi":"10.1021/acs.analchem.4c05466","DOIUrl":null,"url":null,"abstract":"<p><p>We report a Technical Note on detecting nanoplastics in water samples through electrophoresis and quartz crystal microbalance (QCM) instrumentation. We conducted electrophoresis experiments by immersing a QCM in a sample of ultrapure water containing polyethylene (PE) nanoplastics. It was interesting to observe that nanoplastics were attracted toward the QCM and adhered to one side of the QCM electrode. The attached particles introduced mass loading to the QCM and were characterized by a decrease in resonance frequency of the crystal. Furthermore, when a small region around the center of electrode was alone exposed for direct contact in water and the rest of the electrode was masked using photoresist, the nanoplastics were concentrated only in the exposed electrode region, significantly enhancing detection sensitivity. To further investigate the applicability for real-life water samples, we experimented with the technique with readily available bottled drinking water and mineral water, where we spiked these water samples with nanoplastics. It was observed that the resonance frequency shifts were significantly larger for samples with nanoplastics compared to samples without nanoplastics. In addition, Raman spectroscopy and microscopy imaging were used to further confirm the presence and locations of nanoplastics on the electrode surface. This study highlights the combination of electrophoresis and QCM effectiveness in detecting nanoplastics across different water types and their potential for broader applications in environmental monitoring.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophoresis and Quartz Crystal Microbalance Instrumentation to Sense Nanoplastics in Water.\",\"authors\":\"Wei Yin Lim, Ee Von Lau, Narayanan Ramakrishnan\",\"doi\":\"10.1021/acs.analchem.4c05466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a Technical Note on detecting nanoplastics in water samples through electrophoresis and quartz crystal microbalance (QCM) instrumentation. We conducted electrophoresis experiments by immersing a QCM in a sample of ultrapure water containing polyethylene (PE) nanoplastics. It was interesting to observe that nanoplastics were attracted toward the QCM and adhered to one side of the QCM electrode. The attached particles introduced mass loading to the QCM and were characterized by a decrease in resonance frequency of the crystal. Furthermore, when a small region around the center of electrode was alone exposed for direct contact in water and the rest of the electrode was masked using photoresist, the nanoplastics were concentrated only in the exposed electrode region, significantly enhancing detection sensitivity. To further investigate the applicability for real-life water samples, we experimented with the technique with readily available bottled drinking water and mineral water, where we spiked these water samples with nanoplastics. It was observed that the resonance frequency shifts were significantly larger for samples with nanoplastics compared to samples without nanoplastics. In addition, Raman spectroscopy and microscopy imaging were used to further confirm the presence and locations of nanoplastics on the electrode surface. This study highlights the combination of electrophoresis and QCM effectiveness in detecting nanoplastics across different water types and their potential for broader applications in environmental monitoring.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05466\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05466","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrophoresis and Quartz Crystal Microbalance Instrumentation to Sense Nanoplastics in Water.
We report a Technical Note on detecting nanoplastics in water samples through electrophoresis and quartz crystal microbalance (QCM) instrumentation. We conducted electrophoresis experiments by immersing a QCM in a sample of ultrapure water containing polyethylene (PE) nanoplastics. It was interesting to observe that nanoplastics were attracted toward the QCM and adhered to one side of the QCM electrode. The attached particles introduced mass loading to the QCM and were characterized by a decrease in resonance frequency of the crystal. Furthermore, when a small region around the center of electrode was alone exposed for direct contact in water and the rest of the electrode was masked using photoresist, the nanoplastics were concentrated only in the exposed electrode region, significantly enhancing detection sensitivity. To further investigate the applicability for real-life water samples, we experimented with the technique with readily available bottled drinking water and mineral water, where we spiked these water samples with nanoplastics. It was observed that the resonance frequency shifts were significantly larger for samples with nanoplastics compared to samples without nanoplastics. In addition, Raman spectroscopy and microscopy imaging were used to further confirm the presence and locations of nanoplastics on the electrode surface. This study highlights the combination of electrophoresis and QCM effectiveness in detecting nanoplastics across different water types and their potential for broader applications in environmental monitoring.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.