微生物介导的铁酸盐相变过程中钼的流动性。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-11-27 DOI:10.1021/acs.est.4c09144
Jing Zhang, Mengqiang Zhu, Jonathan R Lloyd, Samuel Shaw, Victoria S Coker, Jinxin Xie, Ke Wen, Sungsik Lee, Thomas L Goût, Jingyue Hao, Lin Ma, Yandi Hu, Bo Pan
{"title":"微生物介导的铁酸盐相变过程中钼的流动性。","authors":"Jing Zhang, Mengqiang Zhu, Jonathan R Lloyd, Samuel Shaw, Victoria S Coker, Jinxin Xie, Ke Wen, Sungsik Lee, Thomas L Goût, Jingyue Hao, Lin Ma, Yandi Hu, Bo Pan","doi":"10.1021/acs.est.4c09144","DOIUrl":null,"url":null,"abstract":"<p><p>Molybdenum (Mo) is an essential nutrient for almost all organisms. However, at high concentrations, it can be toxic to animals and plants. This study investigated the interactions of Mo(VI) with iron oxyhydroxides during ferrihydrite bioreduction in the presence of Fe(III)-reducing <i>Geobacter sulfurreducens</i>. Here, we showed that Mo concentration controlled ferrihydrite phase transformation, leading to Mo release. With the biotic reduction of ferrihydrite and Fe(II) production, Mo(VI) reduction and Mo(IV)O<sub>2</sub> formation were observed for the first time, which further immobilized Mo after surface adsorption of Mo(VI). At low Mo levels (Mo/Fe molar ratios of 1-2%), sufficient Fe(II) adsorption onto ferrihydrite resulted in its transformation into magnetite nanoparticles (>80%, ∼25 nm), which catalyzed the reduction of Mo(VI) to form Mo(IV)O<sub>2</sub> and immobilized Mo. Contrastingly, at high Mo concentrations (Mo/Fe molar ratios of 5-10%), Mo(VI)O<sub>4</sub><sup>2-</sup> adsorption onto ferrihydrite limited Fe(II) adsorption; subsequently, less magnetite (<8-12%) formed while more goethite (∼30-50%, width and length >15 and 100 nm, respectively) and siderite (∼20-30%, width and length >100 and 200 nm, respectively) with larger particle sizes formed instead, causing Mo(VI) release due to lower Mo adsorption. This study provides a comprehensive understanding of the interaction mechanisms among <i>Geobacter sulfurreducens</i>, Mo(VI), and iron oxyhydroxides, enabling predictions and controls of long-term Mo mobility and Fe mineral transformation under a variety of biogeochemical scenarios.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mobility of Mo during Microbially Mediated Ferrihydrite Phase Transformation.\",\"authors\":\"Jing Zhang, Mengqiang Zhu, Jonathan R Lloyd, Samuel Shaw, Victoria S Coker, Jinxin Xie, Ke Wen, Sungsik Lee, Thomas L Goût, Jingyue Hao, Lin Ma, Yandi Hu, Bo Pan\",\"doi\":\"10.1021/acs.est.4c09144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molybdenum (Mo) is an essential nutrient for almost all organisms. However, at high concentrations, it can be toxic to animals and plants. This study investigated the interactions of Mo(VI) with iron oxyhydroxides during ferrihydrite bioreduction in the presence of Fe(III)-reducing <i>Geobacter sulfurreducens</i>. Here, we showed that Mo concentration controlled ferrihydrite phase transformation, leading to Mo release. With the biotic reduction of ferrihydrite and Fe(II) production, Mo(VI) reduction and Mo(IV)O<sub>2</sub> formation were observed for the first time, which further immobilized Mo after surface adsorption of Mo(VI). At low Mo levels (Mo/Fe molar ratios of 1-2%), sufficient Fe(II) adsorption onto ferrihydrite resulted in its transformation into magnetite nanoparticles (>80%, ∼25 nm), which catalyzed the reduction of Mo(VI) to form Mo(IV)O<sub>2</sub> and immobilized Mo. Contrastingly, at high Mo concentrations (Mo/Fe molar ratios of 5-10%), Mo(VI)O<sub>4</sub><sup>2-</sup> adsorption onto ferrihydrite limited Fe(II) adsorption; subsequently, less magnetite (<8-12%) formed while more goethite (∼30-50%, width and length >15 and 100 nm, respectively) and siderite (∼20-30%, width and length >100 and 200 nm, respectively) with larger particle sizes formed instead, causing Mo(VI) release due to lower Mo adsorption. This study provides a comprehensive understanding of the interaction mechanisms among <i>Geobacter sulfurreducens</i>, Mo(VI), and iron oxyhydroxides, enabling predictions and controls of long-term Mo mobility and Fe mineral transformation under a variety of biogeochemical scenarios.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c09144\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09144","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

钼(Mo)几乎是所有生物的必需营养元素。然而,高浓度的钼会对动物和植物产生毒性。本研究调查了在铁(III)还原型硫化 Geobacterucens 的存在下,亚铁酸盐生物还原过程中 Mo(VI) 与铁氧氢氧化物的相互作用。在这里,我们发现钼的浓度控制着铁水物的相变,从而导致钼的释放。随着亚铁酸盐的生物还原和 Fe(II)的产生,首次观察到 Mo(VI)的还原和 Mo(IV)O2 的形成,Mo(VI)的表面吸附进一步固定了 Mo。在低浓度 Mo(Mo/Fe 摩尔比为 1-2%)条件下,Fe(II)充分吸附在铁水物上,使其转化为磁铁矿纳米颗粒(>80%,∼25 nm),从而催化 Mo(VI) 还原形成 Mo(IV)O2 并固定 Mo。相反,当 Mo 浓度较高时(Mo/Fe 摩尔比为 5-10%),Mo(VI)O42- 在铁酸盐上的吸附限制了 Fe(II) 的吸附;随后,粒径较大的磁铁矿(分别为 15 和 100 nm)和菱铁矿(∼20-30%,宽度和长度分别大于 100 和 200 nm)反而形成较少,导致 Mo(VI) 因吸附较少而释放。这项研究全面了解了硫化钝化地质细菌、Mo(VI)和铁氧氢氧化物之间的相互作用机制,有助于预测和控制各种生物地球化学情景下长期的 Mo 移动性和铁矿物转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Mobility of Mo during Microbially Mediated Ferrihydrite Phase Transformation.

Molybdenum (Mo) is an essential nutrient for almost all organisms. However, at high concentrations, it can be toxic to animals and plants. This study investigated the interactions of Mo(VI) with iron oxyhydroxides during ferrihydrite bioreduction in the presence of Fe(III)-reducing Geobacter sulfurreducens. Here, we showed that Mo concentration controlled ferrihydrite phase transformation, leading to Mo release. With the biotic reduction of ferrihydrite and Fe(II) production, Mo(VI) reduction and Mo(IV)O2 formation were observed for the first time, which further immobilized Mo after surface adsorption of Mo(VI). At low Mo levels (Mo/Fe molar ratios of 1-2%), sufficient Fe(II) adsorption onto ferrihydrite resulted in its transformation into magnetite nanoparticles (>80%, ∼25 nm), which catalyzed the reduction of Mo(VI) to form Mo(IV)O2 and immobilized Mo. Contrastingly, at high Mo concentrations (Mo/Fe molar ratios of 5-10%), Mo(VI)O42- adsorption onto ferrihydrite limited Fe(II) adsorption; subsequently, less magnetite (<8-12%) formed while more goethite (∼30-50%, width and length >15 and 100 nm, respectively) and siderite (∼20-30%, width and length >100 and 200 nm, respectively) with larger particle sizes formed instead, causing Mo(VI) release due to lower Mo adsorption. This study provides a comprehensive understanding of the interaction mechanisms among Geobacter sulfurreducens, Mo(VI), and iron oxyhydroxides, enabling predictions and controls of long-term Mo mobility and Fe mineral transformation under a variety of biogeochemical scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Pyrogenic PAHs Have Different Biogeochemical Fates in the Eastern Indian Ocean Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES) Lithium-Ion Battery Recycling: Bridging Regulation Implementation and Technological Innovations for Better Battery Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1