Dilsad Dolunay Eslek Koyuncu, Ilkin Tug, Nuray Oktar, Kirali Murtezaoglu
{"title":"使用 KIT-6 支持的非贵金属基催化剂从甲酸中制氢。","authors":"Dilsad Dolunay Eslek Koyuncu, Ilkin Tug, Nuray Oktar, Kirali Murtezaoglu","doi":"10.1002/cplu.202400665","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to investigate the activity of KIT-6 supported nickel (Ni) and cobalt (Co) catalysts, and the effect of Co incorporation to the Ni@KIT-6 catalyst in the formic acid (FA) dehydrogenation. Ni and Co are inexpensive and readily available non-noble transition metals that are considered ideal for dehydrogenation reactions due to their high activity against C-C and C-H bond breaking. In this study, KIT-6 supported catalysts were tested for hydrogen production from FA in a conventionally heated packed-bed continuous-flow system. N2 adsorption-desorption isotherms of the samples were found to be consistent with Type-IV according to the International Union of Pure and Applied Chemistry (IUPAC) classification. The introduction of metal loading resulted in the preservation of the mesoporous structure of the support material. X-ray diffraction (XRD) patterns of the catalysts exhibited the characteristic amorphous silica structure. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) analysis, Lewis acidity of Co-based catalysts was found to be higher than the Ni-based catalysts. The complete formic acid conversion was observed at 200-350 °C. The highest H2 selectivity was obtained with the 3Ni@KIT-6 catalyst. The Co-based catalysts exhibited relatively lower catalytic activity, which was linked to increased coke formation within these catalysts.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400665"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Production from Formic Acid Using KIT-6 Supported Non-Noble Metal-Based Catalysts.\",\"authors\":\"Dilsad Dolunay Eslek Koyuncu, Ilkin Tug, Nuray Oktar, Kirali Murtezaoglu\",\"doi\":\"10.1002/cplu.202400665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study is to investigate the activity of KIT-6 supported nickel (Ni) and cobalt (Co) catalysts, and the effect of Co incorporation to the Ni@KIT-6 catalyst in the formic acid (FA) dehydrogenation. Ni and Co are inexpensive and readily available non-noble transition metals that are considered ideal for dehydrogenation reactions due to their high activity against C-C and C-H bond breaking. In this study, KIT-6 supported catalysts were tested for hydrogen production from FA in a conventionally heated packed-bed continuous-flow system. N2 adsorption-desorption isotherms of the samples were found to be consistent with Type-IV according to the International Union of Pure and Applied Chemistry (IUPAC) classification. The introduction of metal loading resulted in the preservation of the mesoporous structure of the support material. X-ray diffraction (XRD) patterns of the catalysts exhibited the characteristic amorphous silica structure. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) analysis, Lewis acidity of Co-based catalysts was found to be higher than the Ni-based catalysts. The complete formic acid conversion was observed at 200-350 °C. The highest H2 selectivity was obtained with the 3Ni@KIT-6 catalyst. The Co-based catalysts exhibited relatively lower catalytic activity, which was linked to increased coke formation within these catalysts.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400665\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400665\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400665","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在探讨 KIT-6 支持的镍(Ni)和钴(Co)催化剂的活性,以及在 Ni@KIT-6 催化剂中加入 Co 对甲酸(FA)脱氢反应的影响。镍和钴是价格低廉且容易获得的非贵金属过渡金属,由于它们对 C-C 和 C-H 键断裂具有很高的活性,因此被认为是脱氢反应的理想催化剂。本研究测试了 KIT-6 支持催化剂在传统加热填料床连续流系统中从 FA 中制氢的情况。根据国际纯粹与应用化学联合会(IUPAC)的分类,样品的 N2 吸附-解吸等温线符合 Type-IV。引入金属负载后,支撑材料的介孔结构得以保留。催化剂的 X 射线衍射 (XRD) 图显示出特征性的无定形二氧化硅结构。通过漫反射红外傅立叶变换光谱(DRIFT)分析,发现 Co 基催化剂的路易斯酸度高于 Ni 基催化剂。甲酸在 200-350 °C 时完全转化。3Ni@KIT-6 催化剂的 H2 选择性最高。Co 基催化剂的催化活性相对较低,这与这些催化剂中焦炭形成增加有关。
Hydrogen Production from Formic Acid Using KIT-6 Supported Non-Noble Metal-Based Catalysts.
The aim of this study is to investigate the activity of KIT-6 supported nickel (Ni) and cobalt (Co) catalysts, and the effect of Co incorporation to the Ni@KIT-6 catalyst in the formic acid (FA) dehydrogenation. Ni and Co are inexpensive and readily available non-noble transition metals that are considered ideal for dehydrogenation reactions due to their high activity against C-C and C-H bond breaking. In this study, KIT-6 supported catalysts were tested for hydrogen production from FA in a conventionally heated packed-bed continuous-flow system. N2 adsorption-desorption isotherms of the samples were found to be consistent with Type-IV according to the International Union of Pure and Applied Chemistry (IUPAC) classification. The introduction of metal loading resulted in the preservation of the mesoporous structure of the support material. X-ray diffraction (XRD) patterns of the catalysts exhibited the characteristic amorphous silica structure. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) analysis, Lewis acidity of Co-based catalysts was found to be higher than the Ni-based catalysts. The complete formic acid conversion was observed at 200-350 °C. The highest H2 selectivity was obtained with the 3Ni@KIT-6 catalyst. The Co-based catalysts exhibited relatively lower catalytic activity, which was linked to increased coke formation within these catalysts.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.