Ilario Baù, Cecilia Poderi, Francesca Sardu, Alessia Giancola, Anna Turchetti, Paola Franchi, Lorenzo Casimiro, Leonardo Andreoni, Serena Silvi, Elisabetta Mezzina, Marco Lucarini
{"title":"Rotaxane 催化的伯醇有氧氧化。","authors":"Ilario Baù, Cecilia Poderi, Francesca Sardu, Alessia Giancola, Anna Turchetti, Paola Franchi, Lorenzo Casimiro, Leonardo Andreoni, Serena Silvi, Elisabetta Mezzina, Marco Lucarini","doi":"10.1038/s42004-024-01375-0","DOIUrl":null,"url":null,"abstract":"Nitroxide radicals are widely utilized as catalysts for the oxidation of primary alcohols. Here, the aerobic catalytic oxidation cycle of nitroxide radicals has been implemented within a mechanically interlocked rotaxane architecture consisting of a paramagnetic crown ether, which is confined by a molecular axle containing a dialkylammonium station and a 1,2,3-triazole unit. The rotaxane is engineered to exploit the oxidation of a primary alcohol: the primary catalyst is the wheel, a nitroxide radical capable of altering its oxidation state during the catalytic cycle, while the co-oxidant is the Cerium(IV)/O2 couple. The synthesis of the proposed rotaxane, along with its characterization using EPR, HRMS, voltammetry and NMR data, is reported in the paper. The aerobic catalytic oxidation cycle was further investigated using EPR, NMR and GC-MS analyses. This study can aid in the design of autonomously driven molecular machines that exploit the aerobic catalytic oxidation of nitroxide radicals. Catalytic cycles have been demonstrated in mechanically interlocked systems. Here, the authors report a [2]rotaxane containing a nitroxidic radical macrocycle and establish the efficiency of its catalytic redox cycle in this constrained environment.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-7"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603149/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rotaxane-catalyzed aerobic oxidation of primary alcohols\",\"authors\":\"Ilario Baù, Cecilia Poderi, Francesca Sardu, Alessia Giancola, Anna Turchetti, Paola Franchi, Lorenzo Casimiro, Leonardo Andreoni, Serena Silvi, Elisabetta Mezzina, Marco Lucarini\",\"doi\":\"10.1038/s42004-024-01375-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitroxide radicals are widely utilized as catalysts for the oxidation of primary alcohols. Here, the aerobic catalytic oxidation cycle of nitroxide radicals has been implemented within a mechanically interlocked rotaxane architecture consisting of a paramagnetic crown ether, which is confined by a molecular axle containing a dialkylammonium station and a 1,2,3-triazole unit. The rotaxane is engineered to exploit the oxidation of a primary alcohol: the primary catalyst is the wheel, a nitroxide radical capable of altering its oxidation state during the catalytic cycle, while the co-oxidant is the Cerium(IV)/O2 couple. The synthesis of the proposed rotaxane, along with its characterization using EPR, HRMS, voltammetry and NMR data, is reported in the paper. The aerobic catalytic oxidation cycle was further investigated using EPR, NMR and GC-MS analyses. This study can aid in the design of autonomously driven molecular machines that exploit the aerobic catalytic oxidation of nitroxide radicals. Catalytic cycles have been demonstrated in mechanically interlocked systems. Here, the authors report a [2]rotaxane containing a nitroxidic radical macrocycle and establish the efficiency of its catalytic redox cycle in this constrained environment.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603149/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01375-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01375-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rotaxane-catalyzed aerobic oxidation of primary alcohols
Nitroxide radicals are widely utilized as catalysts for the oxidation of primary alcohols. Here, the aerobic catalytic oxidation cycle of nitroxide radicals has been implemented within a mechanically interlocked rotaxane architecture consisting of a paramagnetic crown ether, which is confined by a molecular axle containing a dialkylammonium station and a 1,2,3-triazole unit. The rotaxane is engineered to exploit the oxidation of a primary alcohol: the primary catalyst is the wheel, a nitroxide radical capable of altering its oxidation state during the catalytic cycle, while the co-oxidant is the Cerium(IV)/O2 couple. The synthesis of the proposed rotaxane, along with its characterization using EPR, HRMS, voltammetry and NMR data, is reported in the paper. The aerobic catalytic oxidation cycle was further investigated using EPR, NMR and GC-MS analyses. This study can aid in the design of autonomously driven molecular machines that exploit the aerobic catalytic oxidation of nitroxide radicals. Catalytic cycles have been demonstrated in mechanically interlocked systems. Here, the authors report a [2]rotaxane containing a nitroxidic radical macrocycle and establish the efficiency of its catalytic redox cycle in this constrained environment.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.