{"title":"代谢指纹图谱揭示了拟南芥 BGLU1、BGLU3 和 BGLU4 在各种黄酮类化合物糖基化中的作用。","authors":"Jana-Freja Frommann , Boas Pucker , Lennart Malte Sielmann , Caroline Müller , Bernd Weisshaar , Ralf Stracke , Rabea Schweiger","doi":"10.1016/j.phytochem.2024.114338","DOIUrl":null,"url":null,"abstract":"<div><div>Flavonoids are specialized metabolites that play important roles in plants, including interactions with the environment. The high structural diversity of this metabolite group is largely due to enzyme-mediated modifications of flavonoid core skeletons. In particular, glycosylation with different sugars is very common. In this study, the functions of the <em>Arabidopsis thaliana</em> glycoside hydrolase family 1-type glycosyltransferase proteins BGLU1, BGLU3, and BGLU4 were investigated, using a reverse genetics approach and untargeted metabolic fingerprinting. We screened for metabolic differences between <em>A. thaliana</em> wild type, loss-of-function mutants, and overexpression lines and partially identified differentially accumulating metabolites, which are putative products and/or substrates of the BGLU enzymes. Our study revealed that the investigated BGLU proteins are glycosyltransferases involved in the glycosylation of already glycosylated flavonoids using different substrates. While BGLU1 appears to be involved in the rhamnosylation of a kaempferol diglycoside in leaves, BGLU3 and BGLU4 are likely involved in the glycosylation of quercetin diglycosides in <em>A. thaliana</em> seeds. In addition, we present evidence that BGLU3 is a multifunctional enzyme that catalyzes other metabolic reactions with more complex substrates. This study deepens our understanding of the metabolic pathways and enzymes that contribute to the high structural diversity of flavonoids.</div></div>","PeriodicalId":20170,"journal":{"name":"Phytochemistry","volume":"231 ","pages":"Article 114338"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic fingerprinting reveals roles of Arabidopsis thaliana BGLU1, BGLU3, and BGLU4 in glycosylation of various flavonoids\",\"authors\":\"Jana-Freja Frommann , Boas Pucker , Lennart Malte Sielmann , Caroline Müller , Bernd Weisshaar , Ralf Stracke , Rabea Schweiger\",\"doi\":\"10.1016/j.phytochem.2024.114338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flavonoids are specialized metabolites that play important roles in plants, including interactions with the environment. The high structural diversity of this metabolite group is largely due to enzyme-mediated modifications of flavonoid core skeletons. In particular, glycosylation with different sugars is very common. In this study, the functions of the <em>Arabidopsis thaliana</em> glycoside hydrolase family 1-type glycosyltransferase proteins BGLU1, BGLU3, and BGLU4 were investigated, using a reverse genetics approach and untargeted metabolic fingerprinting. We screened for metabolic differences between <em>A. thaliana</em> wild type, loss-of-function mutants, and overexpression lines and partially identified differentially accumulating metabolites, which are putative products and/or substrates of the BGLU enzymes. Our study revealed that the investigated BGLU proteins are glycosyltransferases involved in the glycosylation of already glycosylated flavonoids using different substrates. While BGLU1 appears to be involved in the rhamnosylation of a kaempferol diglycoside in leaves, BGLU3 and BGLU4 are likely involved in the glycosylation of quercetin diglycosides in <em>A. thaliana</em> seeds. In addition, we present evidence that BGLU3 is a multifunctional enzyme that catalyzes other metabolic reactions with more complex substrates. This study deepens our understanding of the metabolic pathways and enzymes that contribute to the high structural diversity of flavonoids.</div></div>\",\"PeriodicalId\":20170,\"journal\":{\"name\":\"Phytochemistry\",\"volume\":\"231 \",\"pages\":\"Article 114338\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031942224003753\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031942224003753","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolic fingerprinting reveals roles of Arabidopsis thaliana BGLU1, BGLU3, and BGLU4 in glycosylation of various flavonoids
Flavonoids are specialized metabolites that play important roles in plants, including interactions with the environment. The high structural diversity of this metabolite group is largely due to enzyme-mediated modifications of flavonoid core skeletons. In particular, glycosylation with different sugars is very common. In this study, the functions of the Arabidopsis thaliana glycoside hydrolase family 1-type glycosyltransferase proteins BGLU1, BGLU3, and BGLU4 were investigated, using a reverse genetics approach and untargeted metabolic fingerprinting. We screened for metabolic differences between A. thaliana wild type, loss-of-function mutants, and overexpression lines and partially identified differentially accumulating metabolites, which are putative products and/or substrates of the BGLU enzymes. Our study revealed that the investigated BGLU proteins are glycosyltransferases involved in the glycosylation of already glycosylated flavonoids using different substrates. While BGLU1 appears to be involved in the rhamnosylation of a kaempferol diglycoside in leaves, BGLU3 and BGLU4 are likely involved in the glycosylation of quercetin diglycosides in A. thaliana seeds. In addition, we present evidence that BGLU3 is a multifunctional enzyme that catalyzes other metabolic reactions with more complex substrates. This study deepens our understanding of the metabolic pathways and enzymes that contribute to the high structural diversity of flavonoids.
期刊介绍:
Phytochemistry is a leading international journal publishing studies of plant chemistry, biochemistry, molecular biology and genetics, structure and bioactivities of phytochemicals, including ''-omics'' and bioinformatics/computational biology approaches. Phytochemistry is a primary source for papers dealing with phytochemicals, especially reports concerning their biosynthesis, regulation, and biological properties both in planta and as bioactive principles. Articles are published online as soon as possible as Articles-in-Press and in 12 volumes per year. Occasional topic-focussed special issues are published composed of papers from invited authors.