{"title":"Cu-ZnO/CuO多孔异质结构对铅离子的吸附","authors":"Zufan Gebrekidan , C.R. Ravikumar , Syed Khasim , S. Giridhar Reddy , Dereje Tsegaye , Buzuayehu Abebe","doi":"10.1016/j.inoche.2024.113622","DOIUrl":null,"url":null,"abstract":"<div><div>The pure ZnO and Cu-ZnO/CuO (CuZC) heterostructures had been successfully synthesized using an orange fruit peel extract-based solution combustion synthesis approach. The XRD result revealed the wurtizite phase structure of ZnO NPs with a crystallite size of 12 nm for the CuZC heterostructures. The indirect UV–vis-DRS analysis revealed the band gap energy of ZnO NPs and CuZC heterostructure to be 3.16 and 2.95 eV, respectively. Porous morphology and absence of impurities were confirmed from the FESEM-EDS and TEM/HRTEM analyses. The lead (Pb) ion adsorption potential of NPs was analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The removal efficiency for CuZC heterostructure at an initial Pb ion concentration of 20 mg/L is 96.3 %. Based on the adsorption kinetics and isotherm models fitting value, dominance of the chemisorption adsorption process was confirmed. The doped NPs have the potential to be used as an effective and favorable adsorbent material for remediation of heavy metal ions from water solutions.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113622"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-ZnO/CuO porous heterostructures for adsorption of lead ion\",\"authors\":\"Zufan Gebrekidan , C.R. Ravikumar , Syed Khasim , S. Giridhar Reddy , Dereje Tsegaye , Buzuayehu Abebe\",\"doi\":\"10.1016/j.inoche.2024.113622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pure ZnO and Cu-ZnO/CuO (CuZC) heterostructures had been successfully synthesized using an orange fruit peel extract-based solution combustion synthesis approach. The XRD result revealed the wurtizite phase structure of ZnO NPs with a crystallite size of 12 nm for the CuZC heterostructures. The indirect UV–vis-DRS analysis revealed the band gap energy of ZnO NPs and CuZC heterostructure to be 3.16 and 2.95 eV, respectively. Porous morphology and absence of impurities were confirmed from the FESEM-EDS and TEM/HRTEM analyses. The lead (Pb) ion adsorption potential of NPs was analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The removal efficiency for CuZC heterostructure at an initial Pb ion concentration of 20 mg/L is 96.3 %. Based on the adsorption kinetics and isotherm models fitting value, dominance of the chemisorption adsorption process was confirmed. The doped NPs have the potential to be used as an effective and favorable adsorbent material for remediation of heavy metal ions from water solutions.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"171 \",\"pages\":\"Article 113622\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700324016125\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324016125","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Cu-ZnO/CuO porous heterostructures for adsorption of lead ion
The pure ZnO and Cu-ZnO/CuO (CuZC) heterostructures had been successfully synthesized using an orange fruit peel extract-based solution combustion synthesis approach. The XRD result revealed the wurtizite phase structure of ZnO NPs with a crystallite size of 12 nm for the CuZC heterostructures. The indirect UV–vis-DRS analysis revealed the band gap energy of ZnO NPs and CuZC heterostructure to be 3.16 and 2.95 eV, respectively. Porous morphology and absence of impurities were confirmed from the FESEM-EDS and TEM/HRTEM analyses. The lead (Pb) ion adsorption potential of NPs was analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The removal efficiency for CuZC heterostructure at an initial Pb ion concentration of 20 mg/L is 96.3 %. Based on the adsorption kinetics and isotherm models fitting value, dominance of the chemisorption adsorption process was confirmed. The doped NPs have the potential to be used as an effective and favorable adsorbent material for remediation of heavy metal ions from water solutions.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.