Dali Yang, Alexander S. Edgar, Brennan S. Billow, Jack K. Brett
{"title":"聚(酯聚氨酯)的水解:深入的机理途径确定通过热和化学表征","authors":"Dali Yang, Alexander S. Edgar, Brennan S. Billow, Jack K. Brett","doi":"10.1016/j.polymdegradstab.2024.111084","DOIUrl":null,"url":null,"abstract":"<div><div>Many structure/property relationships of hydrolyzed poly(ester urethane) (PEU) – a thermoplastic – have been reported. Examples include changes in molecular weight vs. elongation at break and crosslink density vs. mechanical strength. However, the effect of molecular weight (or molar mass) reduction on some physical, thermal, and chemical properties of hydrolyzed PEU have not been reported. Therefore, a large set of hydrolyzed PEU (Estane®5703) samples were obtained from two aging experiments: 1) accelerated aging conducted under various environments (air, nitrogen, moisture) and at 64 °C and below for almost three years, and 2) natural aging conducted under ambient conditions for more than three decades. The hydrolyzed samples were characterized via multi-detection gel permeation chromatography (GPC), thermogravimetric analysis (TGA), modulated differential scanning calorimetry (mDSC), UV–vis spectroscopy, nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) spectroscopy techniques. Hydrolysis of ester linkages in the soft-segments decreases both the molecular weight (M<sub>w</sub>) and the melting point (T<sub>m</sub>) of Estane (from ∼55 °C to 39 °C). Aging above this T<sub>m</sub>, increased mobility of polymer chains and water diffusivity in the PEU matrix alter the PEU degradation pathway from those expected at aging temperatures below this T<sub>m</sub> and have significant bearing on the critical molecular weight (M<sub>C</sub>) at which the physical, chemical, thermal, and mechanical properties of Estane change abruptly. While a M<sub>C</sub> value of 20 kDa is found for PEU hydrolysis at mild temperatures (e.g., as low as 39 °C), the value of M<sub>C</sub> increases with increasing aging temperatures. To complement the existing structure/property relationships reported in the literature, more correlations are obtained, which include the effect of M<sub>w</sub> on polydispersity, intrinsic viscosity (Mark-Houwink equation), UV extinction coefficient, and dn/dc (GPC analysis) values. Furthermore, we seek to bolster previously reported aging models for PEU by developing a practical model with which the extent of degradation and material performance can be predicted based on aging under different temperature ranges both above and below the melting point of Estane.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"231 ","pages":"Article 111084"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrolysis of poly(ester urethane): In-depth mechanistic pathway determination through thermal and chemical characterization\",\"authors\":\"Dali Yang, Alexander S. Edgar, Brennan S. Billow, Jack K. Brett\",\"doi\":\"10.1016/j.polymdegradstab.2024.111084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many structure/property relationships of hydrolyzed poly(ester urethane) (PEU) – a thermoplastic – have been reported. Examples include changes in molecular weight vs. elongation at break and crosslink density vs. mechanical strength. However, the effect of molecular weight (or molar mass) reduction on some physical, thermal, and chemical properties of hydrolyzed PEU have not been reported. Therefore, a large set of hydrolyzed PEU (Estane®5703) samples were obtained from two aging experiments: 1) accelerated aging conducted under various environments (air, nitrogen, moisture) and at 64 °C and below for almost three years, and 2) natural aging conducted under ambient conditions for more than three decades. The hydrolyzed samples were characterized via multi-detection gel permeation chromatography (GPC), thermogravimetric analysis (TGA), modulated differential scanning calorimetry (mDSC), UV–vis spectroscopy, nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) spectroscopy techniques. Hydrolysis of ester linkages in the soft-segments decreases both the molecular weight (M<sub>w</sub>) and the melting point (T<sub>m</sub>) of Estane (from ∼55 °C to 39 °C). Aging above this T<sub>m</sub>, increased mobility of polymer chains and water diffusivity in the PEU matrix alter the PEU degradation pathway from those expected at aging temperatures below this T<sub>m</sub> and have significant bearing on the critical molecular weight (M<sub>C</sub>) at which the physical, chemical, thermal, and mechanical properties of Estane change abruptly. While a M<sub>C</sub> value of 20 kDa is found for PEU hydrolysis at mild temperatures (e.g., as low as 39 °C), the value of M<sub>C</sub> increases with increasing aging temperatures. To complement the existing structure/property relationships reported in the literature, more correlations are obtained, which include the effect of M<sub>w</sub> on polydispersity, intrinsic viscosity (Mark-Houwink equation), UV extinction coefficient, and dn/dc (GPC analysis) values. Furthermore, we seek to bolster previously reported aging models for PEU by developing a practical model with which the extent of degradation and material performance can be predicted based on aging under different temperature ranges both above and below the melting point of Estane.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"231 \",\"pages\":\"Article 111084\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024004270\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004270","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Hydrolysis of poly(ester urethane): In-depth mechanistic pathway determination through thermal and chemical characterization
Many structure/property relationships of hydrolyzed poly(ester urethane) (PEU) – a thermoplastic – have been reported. Examples include changes in molecular weight vs. elongation at break and crosslink density vs. mechanical strength. However, the effect of molecular weight (or molar mass) reduction on some physical, thermal, and chemical properties of hydrolyzed PEU have not been reported. Therefore, a large set of hydrolyzed PEU (Estane®5703) samples were obtained from two aging experiments: 1) accelerated aging conducted under various environments (air, nitrogen, moisture) and at 64 °C and below for almost three years, and 2) natural aging conducted under ambient conditions for more than three decades. The hydrolyzed samples were characterized via multi-detection gel permeation chromatography (GPC), thermogravimetric analysis (TGA), modulated differential scanning calorimetry (mDSC), UV–vis spectroscopy, nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) spectroscopy techniques. Hydrolysis of ester linkages in the soft-segments decreases both the molecular weight (Mw) and the melting point (Tm) of Estane (from ∼55 °C to 39 °C). Aging above this Tm, increased mobility of polymer chains and water diffusivity in the PEU matrix alter the PEU degradation pathway from those expected at aging temperatures below this Tm and have significant bearing on the critical molecular weight (MC) at which the physical, chemical, thermal, and mechanical properties of Estane change abruptly. While a MC value of 20 kDa is found for PEU hydrolysis at mild temperatures (e.g., as low as 39 °C), the value of MC increases with increasing aging temperatures. To complement the existing structure/property relationships reported in the literature, more correlations are obtained, which include the effect of Mw on polydispersity, intrinsic viscosity (Mark-Houwink equation), UV extinction coefficient, and dn/dc (GPC analysis) values. Furthermore, we seek to bolster previously reported aging models for PEU by developing a practical model with which the extent of degradation and material performance can be predicted based on aging under different temperature ranges both above and below the melting point of Estane.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.