Brennan J. Curole , Malin Sahlstedt , Scott M. Grayson
{"title":"17世纪沉船“瓦萨”号及相关木制品中聚乙二醇的分析","authors":"Brennan J. Curole , Malin Sahlstedt , Scott M. Grayson","doi":"10.1016/j.polymdegradstab.2024.111090","DOIUrl":null,"url":null,"abstract":"<div><div><em>Vasa</em>, a Swedish warship that sunk in 1628 and was excavated in 1961, and associated wooden objects underwent a preservation process using various low molecular weights (600, 1500, and 4000 M<sub>n</sub>) of poly(ethylene glycol) (PEG) to gradually displace the water within the wooden structure, preventing the collapse of the waterlogged wood upon drying. However, after six decades of aging after application, to what extent are these polymers degraded? To investigate this, a Soxhlet apparatus was used to extract PEG from wooden samples of <em>Vasa</em>, and lyophilization was used to dry aqueous PEG solutions, these samples being the runoff accumulated during the application of different molecular weights of PEG to <em>Vasa</em> and other associated wooden objects. These samples underwent analysis via matrix-assisted laser desorption/ionization – time-of-flight mass spectrometry (MALDI-TOF MS), gel permeation chromatography (GPC), and <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy.</div><div>The primary discovery was that the PEG within <em>Vasa</em> exhibited minimal degradation, with the dominant identified species, as determined by MALDI-TOF MS and NMR spectroscopy, being HO-PEG-OH. However, small quantities of HO-PEG-OH had undergone degradation, resulting in the formation of PEG chains with distinct end groups, notably a range of carbonyl-based compounds, including aldehydes, carboxylic acids, and esters, as observed through MALDI-TOF MS, <sup>1</sup>H, and <sup>13</sup>C NMR spectroscopy. These mass spectrometry product peaks could be confirmed by the expected mass difference through various end-group functionalizations, such as oxidations, esterifications, or ether formations. In addition to the carbonyl-based degradation products, some PEG chains had completely cleaved into two separate lower molecular weight HO-PEG-OH polymers, each approximately half of their original molecular weight, as revealed by GPC analysis.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"231 ","pages":"Article 111090"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Poly(ethylene glycol) from the conservation of 17th century shipwreck Vasa and associated wooden objects\",\"authors\":\"Brennan J. Curole , Malin Sahlstedt , Scott M. Grayson\",\"doi\":\"10.1016/j.polymdegradstab.2024.111090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Vasa</em>, a Swedish warship that sunk in 1628 and was excavated in 1961, and associated wooden objects underwent a preservation process using various low molecular weights (600, 1500, and 4000 M<sub>n</sub>) of poly(ethylene glycol) (PEG) to gradually displace the water within the wooden structure, preventing the collapse of the waterlogged wood upon drying. However, after six decades of aging after application, to what extent are these polymers degraded? To investigate this, a Soxhlet apparatus was used to extract PEG from wooden samples of <em>Vasa</em>, and lyophilization was used to dry aqueous PEG solutions, these samples being the runoff accumulated during the application of different molecular weights of PEG to <em>Vasa</em> and other associated wooden objects. These samples underwent analysis via matrix-assisted laser desorption/ionization – time-of-flight mass spectrometry (MALDI-TOF MS), gel permeation chromatography (GPC), and <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy.</div><div>The primary discovery was that the PEG within <em>Vasa</em> exhibited minimal degradation, with the dominant identified species, as determined by MALDI-TOF MS and NMR spectroscopy, being HO-PEG-OH. However, small quantities of HO-PEG-OH had undergone degradation, resulting in the formation of PEG chains with distinct end groups, notably a range of carbonyl-based compounds, including aldehydes, carboxylic acids, and esters, as observed through MALDI-TOF MS, <sup>1</sup>H, and <sup>13</sup>C NMR spectroscopy. These mass spectrometry product peaks could be confirmed by the expected mass difference through various end-group functionalizations, such as oxidations, esterifications, or ether formations. In addition to the carbonyl-based degradation products, some PEG chains had completely cleaved into two separate lower molecular weight HO-PEG-OH polymers, each approximately half of their original molecular weight, as revealed by GPC analysis.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"231 \",\"pages\":\"Article 111090\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024004336\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004336","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Analysis of Poly(ethylene glycol) from the conservation of 17th century shipwreck Vasa and associated wooden objects
Vasa, a Swedish warship that sunk in 1628 and was excavated in 1961, and associated wooden objects underwent a preservation process using various low molecular weights (600, 1500, and 4000 Mn) of poly(ethylene glycol) (PEG) to gradually displace the water within the wooden structure, preventing the collapse of the waterlogged wood upon drying. However, after six decades of aging after application, to what extent are these polymers degraded? To investigate this, a Soxhlet apparatus was used to extract PEG from wooden samples of Vasa, and lyophilization was used to dry aqueous PEG solutions, these samples being the runoff accumulated during the application of different molecular weights of PEG to Vasa and other associated wooden objects. These samples underwent analysis via matrix-assisted laser desorption/ionization – time-of-flight mass spectrometry (MALDI-TOF MS), gel permeation chromatography (GPC), and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy.
The primary discovery was that the PEG within Vasa exhibited minimal degradation, with the dominant identified species, as determined by MALDI-TOF MS and NMR spectroscopy, being HO-PEG-OH. However, small quantities of HO-PEG-OH had undergone degradation, resulting in the formation of PEG chains with distinct end groups, notably a range of carbonyl-based compounds, including aldehydes, carboxylic acids, and esters, as observed through MALDI-TOF MS, 1H, and 13C NMR spectroscopy. These mass spectrometry product peaks could be confirmed by the expected mass difference through various end-group functionalizations, such as oxidations, esterifications, or ether formations. In addition to the carbonyl-based degradation products, some PEG chains had completely cleaved into two separate lower molecular weight HO-PEG-OH polymers, each approximately half of their original molecular weight, as revealed by GPC analysis.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.