Oscar Izquierdo-Monge, Amy Zulema Velasco Bonilla, Marta Lafuente-Cacho, Paula Peña-Carro, Ángel Hernández-Jiménez
{"title":"西班牙微电网中电动汽车充电的启发式方法:利用可再生能源盈余","authors":"Oscar Izquierdo-Monge, Amy Zulema Velasco Bonilla, Marta Lafuente-Cacho, Paula Peña-Carro, Ángel Hernández-Jiménez","doi":"10.1016/j.jpowsour.2024.235945","DOIUrl":null,"url":null,"abstract":"<div><div>The transition towards renewable energies has intensified due to the global energy crisis, climate neutrality goals, and the increase in electrical demand. Technologies such as wind and solar have driven this change, although they present challenges such as intermittency and volatility. To maintain grid stability, solutions such as microgrids and energy storage system are required, improving supply quality and energy efficiency. Electric vehicles have gained importance as energy storage system through Vehicle-to-Grid technology. This article describes the implementation of a heuristic method in the microgrid of CEDER-CIEMAT (Center for Renewable Energy Development – Center for Energy, Environmental and Technological Research) in Spain. This microgrid, with a diversity of components and consumption profiles, allows for the acquisition of accurate data in a real-world setting. The heuristic method optimizes the charging of electric vehicles by leveraging the surplus renewable energy from the center, achieving 78 % of charging with surplus power and 96 % with renewable energy. This results in annual savings exceeding 900 €, ensuring sustainable energy use in the microgrid.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"629 ","pages":"Article 235945"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus\",\"authors\":\"Oscar Izquierdo-Monge, Amy Zulema Velasco Bonilla, Marta Lafuente-Cacho, Paula Peña-Carro, Ángel Hernández-Jiménez\",\"doi\":\"10.1016/j.jpowsour.2024.235945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition towards renewable energies has intensified due to the global energy crisis, climate neutrality goals, and the increase in electrical demand. Technologies such as wind and solar have driven this change, although they present challenges such as intermittency and volatility. To maintain grid stability, solutions such as microgrids and energy storage system are required, improving supply quality and energy efficiency. Electric vehicles have gained importance as energy storage system through Vehicle-to-Grid technology. This article describes the implementation of a heuristic method in the microgrid of CEDER-CIEMAT (Center for Renewable Energy Development – Center for Energy, Environmental and Technological Research) in Spain. This microgrid, with a diversity of components and consumption profiles, allows for the acquisition of accurate data in a real-world setting. The heuristic method optimizes the charging of electric vehicles by leveraging the surplus renewable energy from the center, achieving 78 % of charging with surplus power and 96 % with renewable energy. This results in annual savings exceeding 900 €, ensuring sustainable energy use in the microgrid.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"629 \",\"pages\":\"Article 235945\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018974\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018974","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
The transition towards renewable energies has intensified due to the global energy crisis, climate neutrality goals, and the increase in electrical demand. Technologies such as wind and solar have driven this change, although they present challenges such as intermittency and volatility. To maintain grid stability, solutions such as microgrids and energy storage system are required, improving supply quality and energy efficiency. Electric vehicles have gained importance as energy storage system through Vehicle-to-Grid technology. This article describes the implementation of a heuristic method in the microgrid of CEDER-CIEMAT (Center for Renewable Energy Development – Center for Energy, Environmental and Technological Research) in Spain. This microgrid, with a diversity of components and consumption profiles, allows for the acquisition of accurate data in a real-world setting. The heuristic method optimizes the charging of electric vehicles by leveraging the surplus renewable energy from the center, achieving 78 % of charging with surplus power and 96 % with renewable energy. This results in annual savings exceeding 900 €, ensuring sustainable energy use in the microgrid.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems