西班牙微电网中电动汽车充电的启发式方法:利用可再生能源盈余

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-30 DOI:10.1016/j.jpowsour.2024.235945
Oscar Izquierdo-Monge, Amy Zulema Velasco Bonilla, Marta Lafuente-Cacho, Paula Peña-Carro, Ángel Hernández-Jiménez
{"title":"西班牙微电网中电动汽车充电的启发式方法:利用可再生能源盈余","authors":"Oscar Izquierdo-Monge,&nbsp;Amy Zulema Velasco Bonilla,&nbsp;Marta Lafuente-Cacho,&nbsp;Paula Peña-Carro,&nbsp;Ángel Hernández-Jiménez","doi":"10.1016/j.jpowsour.2024.235945","DOIUrl":null,"url":null,"abstract":"<div><div>The transition towards renewable energies has intensified due to the global energy crisis, climate neutrality goals, and the increase in electrical demand. Technologies such as wind and solar have driven this change, although they present challenges such as intermittency and volatility. To maintain grid stability, solutions such as microgrids and energy storage system are required, improving supply quality and energy efficiency. Electric vehicles have gained importance as energy storage system through Vehicle-to-Grid technology. This article describes the implementation of a heuristic method in the microgrid of CEDER-CIEMAT (Center for Renewable Energy Development – Center for Energy, Environmental and Technological Research) in Spain. This microgrid, with a diversity of components and consumption profiles, allows for the acquisition of accurate data in a real-world setting. The heuristic method optimizes the charging of electric vehicles by leveraging the surplus renewable energy from the center, achieving 78 % of charging with surplus power and 96 % with renewable energy. This results in annual savings exceeding 900 €, ensuring sustainable energy use in the microgrid.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"629 ","pages":"Article 235945"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus\",\"authors\":\"Oscar Izquierdo-Monge,&nbsp;Amy Zulema Velasco Bonilla,&nbsp;Marta Lafuente-Cacho,&nbsp;Paula Peña-Carro,&nbsp;Ángel Hernández-Jiménez\",\"doi\":\"10.1016/j.jpowsour.2024.235945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition towards renewable energies has intensified due to the global energy crisis, climate neutrality goals, and the increase in electrical demand. Technologies such as wind and solar have driven this change, although they present challenges such as intermittency and volatility. To maintain grid stability, solutions such as microgrids and energy storage system are required, improving supply quality and energy efficiency. Electric vehicles have gained importance as energy storage system through Vehicle-to-Grid technology. This article describes the implementation of a heuristic method in the microgrid of CEDER-CIEMAT (Center for Renewable Energy Development – Center for Energy, Environmental and Technological Research) in Spain. This microgrid, with a diversity of components and consumption profiles, allows for the acquisition of accurate data in a real-world setting. The heuristic method optimizes the charging of electric vehicles by leveraging the surplus renewable energy from the center, achieving 78 % of charging with surplus power and 96 % with renewable energy. This results in annual savings exceeding 900 €, ensuring sustainable energy use in the microgrid.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"629 \",\"pages\":\"Article 235945\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018974\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018974","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于全球能源危机、气候中和目标和电力需求的增加,向可再生能源的过渡已经加剧。风能和太阳能等技术推动了这一变化,尽管它们存在间歇性和波动性等挑战。为了维持电网的稳定,需要微电网和储能系统等解决方案,以提高供电质量和能源效率。通过车联网技术,电动汽车作为储能系统的重要性日益凸显。本文介绍了一种启发式方法在西班牙CEDER-CIEMAT(可再生能源发展中心-能源、环境和技术研究中心)微电网中的实施。这种微电网具有多种组件和消费概况,可以在现实环境中获取准确的数据。启发式方法利用中心剩余可再生能源对电动汽车充电进行优化,实现剩余电力充电78%,可再生能源充电96%。这样每年可节省超过900欧元,确保了微电网的可持续能源使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
The transition towards renewable energies has intensified due to the global energy crisis, climate neutrality goals, and the increase in electrical demand. Technologies such as wind and solar have driven this change, although they present challenges such as intermittency and volatility. To maintain grid stability, solutions such as microgrids and energy storage system are required, improving supply quality and energy efficiency. Electric vehicles have gained importance as energy storage system through Vehicle-to-Grid technology. This article describes the implementation of a heuristic method in the microgrid of CEDER-CIEMAT (Center for Renewable Energy Development – Center for Energy, Environmental and Technological Research) in Spain. This microgrid, with a diversity of components and consumption profiles, allows for the acquisition of accurate data in a real-world setting. The heuristic method optimizes the charging of electric vehicles by leveraging the surplus renewable energy from the center, achieving 78 % of charging with surplus power and 96 % with renewable energy. This results in annual savings exceeding 900 €, ensuring sustainable energy use in the microgrid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1