一种基于小火焰的欧拉传输PDF方法用于超声速燃烧的建模与仿真

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-11-28 DOI:10.1016/j.combustflame.2024.113864
Shenghui Zhong , Shijie Xu , Wubin Weng , Weiwei Cai , Longfei Chen
{"title":"一种基于小火焰的欧拉传输PDF方法用于超声速燃烧的建模与仿真","authors":"Shenghui Zhong ,&nbsp;Shijie Xu ,&nbsp;Wubin Weng ,&nbsp;Weiwei Cai ,&nbsp;Longfei Chen","doi":"10.1016/j.combustflame.2024.113864","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a high-efficiency and high-fidelity approach to model supersonic combustion using the extended flamelet-generated manifold (FGM) and the Eulerian transported probability density function (PDF), also known as the Eulerian stochastic fields (ESF) method. The efficiency benefits from the FGM, where the compressibility effects induced by shock waves are considered using two extra control variables, i.e., the pressure (<span><math><mi>p</mi></math></span>) and the absolute internal energy of the oxidizer (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>), in addition to the mixture fraction (<span><math><mi>Z</mi></math></span>) and progress variable (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) in traditional flamelet tables. The joint PDF for these control variables is modeled using transported PDF based on the ESF method. The ESF method enhances accuracy in the prediction of turbulence-chemistry interactions, avoiding complexity induced by the presumed PDF in the flamelet table and ad-hoc presumed and independent joint PDF assumptions, e.g., the typical presumed <span><math><mi>β</mi></math></span>-PDF for <span><math><mi>Z</mi></math></span> and <span><math><mi>δ</mi></math></span>-PDF for <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. This FGM-ESF method is tested in large eddy simulations of two canonical hydrogen supersonic flames: a strut-stabilized hydrogen supersonic flame (DLR case) and a transverse hydrogen jet flame in a high-enthalpy incoming flow (Stanford case). For both cases, results show that including the compressibility effects in the FGM table is essential for properly describing the flame behaviors near shock waves. The sub-grid PDF of control variables significantly influences near-wall and shear-layer combustion, and the ESF method demonstrates superior performance in predicting the near-wall reaction zone and the shear-layer reaction zone compared to the perfectly micro-mixed sub-grid model (<span><math><mi>δ</mi></math></span>-PDF) for the Stanford case. This study marks the first application of the FGM-ESF approach with a <span><math><mi>Z</mi></math></span>-<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>-<span><math><mi>p</mi></math></span> FGM table to simulate supersonic flames, offering a novel perspective for future modeling efforts in this domain.</div><div><strong>Novelty and Significance Statement</strong></div><div>The novelty of this research lies in the development and application of an efficient computational approach that for the first time couples the extended flamelet-generated manifold (FGM) method with the Eulerian stochastic fields (ESF) to simulate supersonic flames. This combined FGM-ESF method incorporates pressure and oxidizer energy as additional control variables in the FGM tabulation to account for compressibility effects. The ESF is used to describe the sub-grid scale joint probability density function without relying on complex presumed functions. Application to a canonical strut-stabilized hydrogen supersonic flame and transverse hydrogen jet flames in a high-enthalpy incoming flow demonstrate the superior predictive capabilities of the FGM-ESF method in capturing flame dynamics. The comparison between four-dimensional and two-dimensional FGM tables provides new insights into the importance of compressibility effects for these configurations.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113864"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flamelet-based Eulerian transported PDF method for the modeling and simulation of supersonic combustion\",\"authors\":\"Shenghui Zhong ,&nbsp;Shijie Xu ,&nbsp;Wubin Weng ,&nbsp;Weiwei Cai ,&nbsp;Longfei Chen\",\"doi\":\"10.1016/j.combustflame.2024.113864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a high-efficiency and high-fidelity approach to model supersonic combustion using the extended flamelet-generated manifold (FGM) and the Eulerian transported probability density function (PDF), also known as the Eulerian stochastic fields (ESF) method. The efficiency benefits from the FGM, where the compressibility effects induced by shock waves are considered using two extra control variables, i.e., the pressure (<span><math><mi>p</mi></math></span>) and the absolute internal energy of the oxidizer (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>), in addition to the mixture fraction (<span><math><mi>Z</mi></math></span>) and progress variable (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) in traditional flamelet tables. The joint PDF for these control variables is modeled using transported PDF based on the ESF method. The ESF method enhances accuracy in the prediction of turbulence-chemistry interactions, avoiding complexity induced by the presumed PDF in the flamelet table and ad-hoc presumed and independent joint PDF assumptions, e.g., the typical presumed <span><math><mi>β</mi></math></span>-PDF for <span><math><mi>Z</mi></math></span> and <span><math><mi>δ</mi></math></span>-PDF for <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. This FGM-ESF method is tested in large eddy simulations of two canonical hydrogen supersonic flames: a strut-stabilized hydrogen supersonic flame (DLR case) and a transverse hydrogen jet flame in a high-enthalpy incoming flow (Stanford case). For both cases, results show that including the compressibility effects in the FGM table is essential for properly describing the flame behaviors near shock waves. The sub-grid PDF of control variables significantly influences near-wall and shear-layer combustion, and the ESF method demonstrates superior performance in predicting the near-wall reaction zone and the shear-layer reaction zone compared to the perfectly micro-mixed sub-grid model (<span><math><mi>δ</mi></math></span>-PDF) for the Stanford case. This study marks the first application of the FGM-ESF approach with a <span><math><mi>Z</mi></math></span>-<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>-<span><math><mi>p</mi></math></span> FGM table to simulate supersonic flames, offering a novel perspective for future modeling efforts in this domain.</div><div><strong>Novelty and Significance Statement</strong></div><div>The novelty of this research lies in the development and application of an efficient computational approach that for the first time couples the extended flamelet-generated manifold (FGM) method with the Eulerian stochastic fields (ESF) to simulate supersonic flames. This combined FGM-ESF method incorporates pressure and oxidizer energy as additional control variables in the FGM tabulation to account for compressibility effects. The ESF is used to describe the sub-grid scale joint probability density function without relying on complex presumed functions. Application to a canonical strut-stabilized hydrogen supersonic flame and transverse hydrogen jet flames in a high-enthalpy incoming flow demonstrate the superior predictive capabilities of the FGM-ESF method in capturing flame dynamics. The comparison between four-dimensional and two-dimensional FGM tables provides new insights into the importance of compressibility effects for these configurations.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"272 \",\"pages\":\"Article 113864\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001021802400573X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001021802400573X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用扩展火焰生成流形(FGM)和欧拉传递概率密度函数(PDF)(也称为欧拉随机场(ESF)方法)高效高保真地模拟超声速燃烧的方法。除了传统火焰表中的混合分数(Z)和进度变量(Yc)外,FGM还使用两个额外的控制变量,即压力(p)和氧化剂的绝对内能(Eox)来考虑激波引起的可压缩性效应,从而提高了效率。使用基于ESF方法的传输PDF对这些控制变量的联合PDF进行建模。ESF方法提高了湍流-化学相互作用预测的准确性,避免了火焰表中假设的PDF和特别的假设和独立的联合PDF假设所带来的复杂性,例如Z的典型假设β-PDF和Yc的δ-PDF。FGM-ESF方法在两种典型氢超声速火焰的大涡模拟中进行了测试:支柱稳定氢超声速火焰(DLR案例)和高焓来流中的横向氢喷射火焰(Stanford案例)。对于这两种情况,结果表明,在FGM表中包括可压缩性效应对于正确描述激波附近的火焰行为是必不可少的。控制变量的子网格PDF对近壁和剪切层燃烧有显著影响,ESF方法在预测近壁反应区和剪切层反应区方面优于斯坦福案例的完全微混合子网格模型(δ-PDF)。这项研究标志着FGM- esf方法与Z-Yc-Eox-p FGM表首次应用于模拟超音速火焰,为该领域未来的建模工作提供了新的视角。新颖性和意义声明本研究的新颖性在于开发并应用了一种高效的计算方法,首次将扩展火焰生成流形(FGM)方法与欧拉随机场(ESF)相结合来模拟超音速火焰。这种组合式FGM- esf方法将压力和氧化剂能量作为FGM表中的附加控制变量,以解释可压缩性影响。ESF用于描述子网格尺度的联合概率密度函数,而不依赖于复杂的假设函数。应用于典型支柱稳定氢超音速火焰和高焓来流中的横向氢射流火焰,证明了FGM-ESF方法在捕获火焰动力学方面的优越预测能力。四维和二维FGM表之间的比较为这些结构的压缩效应的重要性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A flamelet-based Eulerian transported PDF method for the modeling and simulation of supersonic combustion
This paper presents a high-efficiency and high-fidelity approach to model supersonic combustion using the extended flamelet-generated manifold (FGM) and the Eulerian transported probability density function (PDF), also known as the Eulerian stochastic fields (ESF) method. The efficiency benefits from the FGM, where the compressibility effects induced by shock waves are considered using two extra control variables, i.e., the pressure (p) and the absolute internal energy of the oxidizer (Eox), in addition to the mixture fraction (Z) and progress variable (Yc) in traditional flamelet tables. The joint PDF for these control variables is modeled using transported PDF based on the ESF method. The ESF method enhances accuracy in the prediction of turbulence-chemistry interactions, avoiding complexity induced by the presumed PDF in the flamelet table and ad-hoc presumed and independent joint PDF assumptions, e.g., the typical presumed β-PDF for Z and δ-PDF for Yc. This FGM-ESF method is tested in large eddy simulations of two canonical hydrogen supersonic flames: a strut-stabilized hydrogen supersonic flame (DLR case) and a transverse hydrogen jet flame in a high-enthalpy incoming flow (Stanford case). For both cases, results show that including the compressibility effects in the FGM table is essential for properly describing the flame behaviors near shock waves. The sub-grid PDF of control variables significantly influences near-wall and shear-layer combustion, and the ESF method demonstrates superior performance in predicting the near-wall reaction zone and the shear-layer reaction zone compared to the perfectly micro-mixed sub-grid model (δ-PDF) for the Stanford case. This study marks the first application of the FGM-ESF approach with a Z-Yc-Eox-p FGM table to simulate supersonic flames, offering a novel perspective for future modeling efforts in this domain.
Novelty and Significance Statement
The novelty of this research lies in the development and application of an efficient computational approach that for the first time couples the extended flamelet-generated manifold (FGM) method with the Eulerian stochastic fields (ESF) to simulate supersonic flames. This combined FGM-ESF method incorporates pressure and oxidizer energy as additional control variables in the FGM tabulation to account for compressibility effects. The ESF is used to describe the sub-grid scale joint probability density function without relying on complex presumed functions. Application to a canonical strut-stabilized hydrogen supersonic flame and transverse hydrogen jet flames in a high-enthalpy incoming flow demonstrate the superior predictive capabilities of the FGM-ESF method in capturing flame dynamics. The comparison between four-dimensional and two-dimensional FGM tables provides new insights into the importance of compressibility effects for these configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Thermodiffusively-unstable lean premixed hydrogen flames: Length scale effects and turbulent burning regimes Characterization of the burning behavior of Ultra porous polyurethane-based aerogel: Impact of material properties on burning behavior A detailed analysis of the key steps of the cyclopentene autoignition mechanism from calculated RRKM rate constants associated with ignition delay time simulations A detailed kinetic submechanism for OH* chemiluminescence in hydrocarbon combustion Kinetic study of the growth of PAHs from biphenyl with the assistance of phenylacetylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1