基于Jeffreys无信息先验的稀疏贝叶斯学习离网DOA估计

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-11-21 DOI:10.1016/j.sigpro.2024.109809
Mahmood Karimi, Mohammadreza Zare, Mostafa Derakhtian
{"title":"基于Jeffreys无信息先验的稀疏贝叶斯学习离网DOA估计","authors":"Mahmood Karimi,&nbsp;Mohammadreza Zare,&nbsp;Mostafa Derakhtian","doi":"10.1016/j.sigpro.2024.109809","DOIUrl":null,"url":null,"abstract":"<div><div>Sparse Bayesian learning (SBL) algorithms are attractive methods for direction-of-arrival (DOA) estimation and have certain advantages over other sparse representation-based DOA estimation methods. In this paper, a new computationally efficient SBL algorithm for DOA estimation is developed which considers a noninformative prior for hyperparameters. This noninformative prior is obtained using the well-known Jeffreys’ rule which is based on the Fisher information and the hyperparameters are powers of the source signals. The Jeffreys’ prior that is obtained for the hyperparameters is different from the conventional Jeffreys’ prior used in the literature. Moreover, a method for refining the DOA estimates obtained by the SBL algorithm is derived to reduce the off-grid error. Analysis indicates that the computational complexity of the proposed SBL algorithm per iteration is less than that of other existing SBL algorithms. Simulation results exhibit the superior performance of the proposed SBL algorithm compared to state-of-the-art SBL algorithms in terms of DOA estimation accuracy and total computational complexity. Moreover, simulations reveal that, unlike certain other state-of-the-art SBL algorithms, the proposed algorithm is robust to changes in noise power.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109809"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Bayesian Learning with Jeffreys’ Noninformative Prior for Off-Grid DOA Estimation\",\"authors\":\"Mahmood Karimi,&nbsp;Mohammadreza Zare,&nbsp;Mostafa Derakhtian\",\"doi\":\"10.1016/j.sigpro.2024.109809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sparse Bayesian learning (SBL) algorithms are attractive methods for direction-of-arrival (DOA) estimation and have certain advantages over other sparse representation-based DOA estimation methods. In this paper, a new computationally efficient SBL algorithm for DOA estimation is developed which considers a noninformative prior for hyperparameters. This noninformative prior is obtained using the well-known Jeffreys’ rule which is based on the Fisher information and the hyperparameters are powers of the source signals. The Jeffreys’ prior that is obtained for the hyperparameters is different from the conventional Jeffreys’ prior used in the literature. Moreover, a method for refining the DOA estimates obtained by the SBL algorithm is derived to reduce the off-grid error. Analysis indicates that the computational complexity of the proposed SBL algorithm per iteration is less than that of other existing SBL algorithms. Simulation results exhibit the superior performance of the proposed SBL algorithm compared to state-of-the-art SBL algorithms in terms of DOA estimation accuracy and total computational complexity. Moreover, simulations reveal that, unlike certain other state-of-the-art SBL algorithms, the proposed algorithm is robust to changes in noise power.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"230 \",\"pages\":\"Article 109809\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424004298\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004298","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

​本文提出了一种新的计算效率高的SBL算法,该算法考虑了超参数的非信息先验。该非信息先验是利用著名的基于Fisher信息的Jeffreys规则获得的,超参数是源信号的幂。对超参数得到的杰弗里斯先验与文献中使用的传统杰弗里斯先验不同。此外,还提出了一种改进SBL算法得到的DOA估计的方法,以减小离网误差。分析表明,本文提出的SBL算法每次迭代的计算量低于现有的其他SBL算法。仿真结果表明,该算法在DOA估计精度和总计算复杂度方面优于现有的SBL算法。此外,仿真结果表明,与某些最先进的SBL算法不同,该算法对噪声功率的变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Bayesian Learning with Jeffreys’ Noninformative Prior for Off-Grid DOA Estimation
Sparse Bayesian learning (SBL) algorithms are attractive methods for direction-of-arrival (DOA) estimation and have certain advantages over other sparse representation-based DOA estimation methods. In this paper, a new computationally efficient SBL algorithm for DOA estimation is developed which considers a noninformative prior for hyperparameters. This noninformative prior is obtained using the well-known Jeffreys’ rule which is based on the Fisher information and the hyperparameters are powers of the source signals. The Jeffreys’ prior that is obtained for the hyperparameters is different from the conventional Jeffreys’ prior used in the literature. Moreover, a method for refining the DOA estimates obtained by the SBL algorithm is derived to reduce the off-grid error. Analysis indicates that the computational complexity of the proposed SBL algorithm per iteration is less than that of other existing SBL algorithms. Simulation results exhibit the superior performance of the proposed SBL algorithm compared to state-of-the-art SBL algorithms in terms of DOA estimation accuracy and total computational complexity. Moreover, simulations reveal that, unlike certain other state-of-the-art SBL algorithms, the proposed algorithm is robust to changes in noise power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Editorial Board Multifunctional adversarial examples: A novel mechanism for authenticatable privacy protection of images A saddlepoint approximation for the smoothed periodogram Progressive Gaussian filtering for nonlinear uncertain systems based on Gaussian process models A privacy-preserving license plate encryption scheme based on an improved YOLOv8 image recognition algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1