{"title":"缺陷和应变黑色氧化铋(III)的高效光催化制氢","authors":"Thanh Tam Nguyen , Kaveh Edalati","doi":"10.1016/j.ijhydene.2024.11.353","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth (III) oxide (Bi<sub>2</sub>O<sub>3</sub>) has been highly studied as a photocatalyst for green hydrogen production due to its low band gap, yet its efficiency requires enhancement. This study synthesizes a defective and strained black Bi<sub>2</sub>O<sub>3</sub> by severe straining under high pressure, via a high-pressure torsion method, to improve its photocatalytic hydrogen production. The material rich in oxygen vacancies exhibits a ten-fold improvement in water splitting with excellent cycling stability. Such improvement is due to improved light absorption, narrowing band gap and reduced irradiative electron-hole recombination. Moreover, the valence band bottom energy positively increases by straining leading to a high overpotential for hydrogen production. This research highlights the potential of vacancies and lattice strain in developing dopant-free active catalysts for water splitting.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"96 ","pages":"Pages 841-848"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient photocatalytic hydrogen production on defective and strained black bismuth (III) oxide\",\"authors\":\"Thanh Tam Nguyen , Kaveh Edalati\",\"doi\":\"10.1016/j.ijhydene.2024.11.353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bismuth (III) oxide (Bi<sub>2</sub>O<sub>3</sub>) has been highly studied as a photocatalyst for green hydrogen production due to its low band gap, yet its efficiency requires enhancement. This study synthesizes a defective and strained black Bi<sub>2</sub>O<sub>3</sub> by severe straining under high pressure, via a high-pressure torsion method, to improve its photocatalytic hydrogen production. The material rich in oxygen vacancies exhibits a ten-fold improvement in water splitting with excellent cycling stability. Such improvement is due to improved light absorption, narrowing band gap and reduced irradiative electron-hole recombination. Moreover, the valence band bottom energy positively increases by straining leading to a high overpotential for hydrogen production. This research highlights the potential of vacancies and lattice strain in developing dopant-free active catalysts for water splitting.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"96 \",\"pages\":\"Pages 841-848\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924050444\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924050444","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient photocatalytic hydrogen production on defective and strained black bismuth (III) oxide
Bismuth (III) oxide (Bi2O3) has been highly studied as a photocatalyst for green hydrogen production due to its low band gap, yet its efficiency requires enhancement. This study synthesizes a defective and strained black Bi2O3 by severe straining under high pressure, via a high-pressure torsion method, to improve its photocatalytic hydrogen production. The material rich in oxygen vacancies exhibits a ten-fold improvement in water splitting with excellent cycling stability. Such improvement is due to improved light absorption, narrowing band gap and reduced irradiative electron-hole recombination. Moreover, the valence band bottom energy positively increases by straining leading to a high overpotential for hydrogen production. This research highlights the potential of vacancies and lattice strain in developing dopant-free active catalysts for water splitting.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.