耦合CuFeO2/Fe3O4异质结构杂化电催化剂在水裂解中高效析氢作用的研究

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-28 DOI:10.1016/j.ijhydene.2024.11.310
Sandhya Anand Kumar, L. John Kennedy
{"title":"耦合CuFeO2/Fe3O4异质结构杂化电催化剂在水裂解中高效析氢作用的研究","authors":"Sandhya Anand Kumar,&nbsp;L. John Kennedy","doi":"10.1016/j.ijhydene.2024.11.310","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen production via water electrolysis offers a promising route to sustainable energy, but the slow kinetics of the hydrogen evolution reaction (HER) demands efficient, cost-effective electrocatalysts to replace noble metals like platinum. We report a novel CuFeO₂/Fe₃O₄ (CD-SF) nanocomposite synthesized via microwave combustion featuring, heterostructure characterized by X-ray diffraction, X-ray photon spectroscopy, FESEM, and HRTEM. Electrochemical tests of CD-SF on nickel foam in 1 M KOH with Pt coil (Pt-CE) and graphite rod (Gr-CE) counter electrodes show outstanding HER catalytic activity. CD-SF(Pt-CE) achieved a low overpotential of 64.6 mV at current density 10 mA cm<sup>−2</sup>, with an exchange current density of 6.08 mA cm<sup>−2</sup>, while CD-SF(Gr-CE) reached 94.6 mV at 10 mA cm<sup>−2</sup> with an exchange current density of 8.24 mA cm<sup>−2</sup>, outperforming many non-noble metal catalysts. Both catalysts exhibited high stability over 12 h of continuous hydrogen generation. This study highlights CD-SF's potential for large-scale industrial water splitting applications.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"96 ","pages":"Pages 1101-1118"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the combined effect of coupled CuFeO2/Fe3O4 heterostructured hybrid electrocatalyst for efficient hydrogen evolution in water splitting\",\"authors\":\"Sandhya Anand Kumar,&nbsp;L. John Kennedy\",\"doi\":\"10.1016/j.ijhydene.2024.11.310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen production via water electrolysis offers a promising route to sustainable energy, but the slow kinetics of the hydrogen evolution reaction (HER) demands efficient, cost-effective electrocatalysts to replace noble metals like platinum. We report a novel CuFeO₂/Fe₃O₄ (CD-SF) nanocomposite synthesized via microwave combustion featuring, heterostructure characterized by X-ray diffraction, X-ray photon spectroscopy, FESEM, and HRTEM. Electrochemical tests of CD-SF on nickel foam in 1 M KOH with Pt coil (Pt-CE) and graphite rod (Gr-CE) counter electrodes show outstanding HER catalytic activity. CD-SF(Pt-CE) achieved a low overpotential of 64.6 mV at current density 10 mA cm<sup>−2</sup>, with an exchange current density of 6.08 mA cm<sup>−2</sup>, while CD-SF(Gr-CE) reached 94.6 mV at 10 mA cm<sup>−2</sup> with an exchange current density of 8.24 mA cm<sup>−2</sup>, outperforming many non-noble metal catalysts. Both catalysts exhibited high stability over 12 h of continuous hydrogen generation. This study highlights CD-SF's potential for large-scale industrial water splitting applications.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"96 \",\"pages\":\"Pages 1101-1118\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924050006\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924050006","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过水电解制氢为可持续能源提供了一条很有前途的途径,但析氢反应(HER)的缓慢动力学需要高效、经济的电催化剂来取代铂等贵金属。本文报道了一种新型的微波燃烧合成CuFeO₂/Fe₃O₄(CD-SF)纳米复合材料,其异质结构通过x射线衍射、x射线光子光谱、FESEM和HRTEM进行了表征。在1 M KOH中,用Pt线圈(Pt- ce)和石墨棒(Gr-CE)对电极对泡沫镍进行电化学测试,结果表明CD-SF具有优异的HER催化活性。CD-SF(Pt-CE)在电流密度为10 mA cm−2时的过电位为64.6 mV,交换电流密度为6.08 mA cm−2,而CD-SF(Gr-CE)在10 mA cm−2时的过电位为94.6 mV,交换电流密度为8.24 mA cm−2,优于许多非贵金属催化剂。两种催化剂在连续制氢12 h以上均表现出较高的稳定性。这项研究突出了CD-SF在大规模工业水分解应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into the combined effect of coupled CuFeO2/Fe3O4 heterostructured hybrid electrocatalyst for efficient hydrogen evolution in water splitting
Hydrogen production via water electrolysis offers a promising route to sustainable energy, but the slow kinetics of the hydrogen evolution reaction (HER) demands efficient, cost-effective electrocatalysts to replace noble metals like platinum. We report a novel CuFeO₂/Fe₃O₄ (CD-SF) nanocomposite synthesized via microwave combustion featuring, heterostructure characterized by X-ray diffraction, X-ray photon spectroscopy, FESEM, and HRTEM. Electrochemical tests of CD-SF on nickel foam in 1 M KOH with Pt coil (Pt-CE) and graphite rod (Gr-CE) counter electrodes show outstanding HER catalytic activity. CD-SF(Pt-CE) achieved a low overpotential of 64.6 mV at current density 10 mA cm−2, with an exchange current density of 6.08 mA cm−2, while CD-SF(Gr-CE) reached 94.6 mV at 10 mA cm−2 with an exchange current density of 8.24 mA cm−2, outperforming many non-noble metal catalysts. Both catalysts exhibited high stability over 12 h of continuous hydrogen generation. This study highlights CD-SF's potential for large-scale industrial water splitting applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Mesoporous silica-modified metal organic frameworks derived bimetallic electrocatalysts for oxygen reduction reaction in microbial fuel cells Adoption of hydrogen-based steel production under uncertain domestic hydrogen availability: An Indonesian case study Possible role of nanobubbles in the pulsed plasma production of hydrogen Enhanced thermophilic hydrogen production from co-substrate of pretreated waste activated sludge and food waste: Analysis from microbial growth and metabolism Site suitability analysis for green hydrogen production using multi-criteria decision-making methods: A case study in the state of Ceará, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1