对数正态纹理杂波中雷达距离-多普勒双展目标的自适应检测

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-11-26 DOI:10.1016/j.dsp.2024.104882
Jian Xue , Zhen Fan , Shuwen Xu , Meiyan Pan
{"title":"对数正态纹理杂波中雷达距离-多普勒双展目标的自适应检测","authors":"Jian Xue ,&nbsp;Zhen Fan ,&nbsp;Shuwen Xu ,&nbsp;Meiyan Pan","doi":"10.1016/j.dsp.2024.104882","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the problem of adaptive detection of radar targets in non-Gaussian clutter, where the target to be detected is considered to behave the dual-spread in the Doppler frequency dimension and the range dimension. The clutter is assumed to follow the compound Gaussian model with lognormal texture and unknown covariance matrix structure. The multi-rank linear subspace model and the range-spread model are employed to depict the Doppler and range spread characteristics of target echoes. Then, the range-Doppler dual-spread adaptive radar target detector with lognormal-texture is proposed using the two-step generalized likelihood ratio criteria, which replaces the true values of the unknown parameters with their maximum likelihood and maximum a posteriori estimates. Experimental results on simulated and measured data demonstrate that the proposed detector shows superior performance in different clutter and target parameters compared to the competitors.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"157 ","pages":"Article 104882"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive detection of radar range-Doppler dual-spread targets in lognormal-texture clutter\",\"authors\":\"Jian Xue ,&nbsp;Zhen Fan ,&nbsp;Shuwen Xu ,&nbsp;Meiyan Pan\",\"doi\":\"10.1016/j.dsp.2024.104882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the problem of adaptive detection of radar targets in non-Gaussian clutter, where the target to be detected is considered to behave the dual-spread in the Doppler frequency dimension and the range dimension. The clutter is assumed to follow the compound Gaussian model with lognormal texture and unknown covariance matrix structure. The multi-rank linear subspace model and the range-spread model are employed to depict the Doppler and range spread characteristics of target echoes. Then, the range-Doppler dual-spread adaptive radar target detector with lognormal-texture is proposed using the two-step generalized likelihood ratio criteria, which replaces the true values of the unknown parameters with their maximum likelihood and maximum a posteriori estimates. Experimental results on simulated and measured data demonstrate that the proposed detector shows superior performance in different clutter and target parameters compared to the competitors.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"157 \",\"pages\":\"Article 104882\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424005062\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424005062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非高斯杂波条件下雷达目标的自适应检测问题,考虑被检测目标在多普勒频率维和距离维上具有双扩频特性。假设杂波遵循对数正态纹理和未知协方差矩阵结构的复合高斯模型。采用多阶线性子空间模型和距离扩展模型来描述目标回波的多普勒和距离扩展特性。然后,利用两步广义似然比准则提出了对数正态纹理的距离-多普勒双扩频自适应雷达目标探测器,用未知参数的最大似然估计和最大后验估计代替未知参数的真值。仿真和实测数据的实验结果表明,该探测器在不同杂波和目标参数下的性能优于同类探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive detection of radar range-Doppler dual-spread targets in lognormal-texture clutter
This paper investigates the problem of adaptive detection of radar targets in non-Gaussian clutter, where the target to be detected is considered to behave the dual-spread in the Doppler frequency dimension and the range dimension. The clutter is assumed to follow the compound Gaussian model with lognormal texture and unknown covariance matrix structure. The multi-rank linear subspace model and the range-spread model are employed to depict the Doppler and range spread characteristics of target echoes. Then, the range-Doppler dual-spread adaptive radar target detector with lognormal-texture is proposed using the two-step generalized likelihood ratio criteria, which replaces the true values of the unknown parameters with their maximum likelihood and maximum a posteriori estimates. Experimental results on simulated and measured data demonstrate that the proposed detector shows superior performance in different clutter and target parameters compared to the competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Editorial Board Editorial Board Research on ZYNQ neural network acceleration method for aluminum surface microdefects Cross-scale informative priors network for medical image segmentation An improved digital predistortion scheme for nonlinear transmitters with limited bandwidth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1