Jiayu Zou , Yingbo Gao , Moritz H. Frieges , Martin F. Börner , Achim Kampker , Weihan Li
{"title":"使用形成数据进行电池质量分类和寿命预测的机器学习","authors":"Jiayu Zou , Yingbo Gao , Moritz H. Frieges , Martin F. Börner , Achim Kampker , Weihan Li","doi":"10.1016/j.egyai.2024.100451","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate classification of battery quality and prediction of battery lifetime before leaving the factory would bring economic and safety benefits. Here, we propose a data-driven approach with machine learning to classify the battery quality and predict the battery lifetime before usage only using formation data. We extract three classes of features from the raw formation data, considering the statistical aspects, differential analysis, and electrochemical characteristics. The correlation between over 100 extracted features and the battery lifetime is analysed based on the ageing mechanisms. Machine learning models are developed to classify battery quality and predict battery lifetime by features with a high correlation with battery ageing. The validation results show that the quality classification model achieved accuracies of 89.74% and 89.47% for the batteries aged at 25°C and 45°C, respectively. Moreover, the lifetime prediction model is able to predict the battery end-of-life with mean percentage errors of 6.50% and 5.45% for the batteries aged at 25°C and 45°C, respectively. This work highlights the potential of battery formation data from production lines in quality classification and lifetime prediction.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100451"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for battery quality classification and lifetime prediction using formation data\",\"authors\":\"Jiayu Zou , Yingbo Gao , Moritz H. Frieges , Martin F. Börner , Achim Kampker , Weihan Li\",\"doi\":\"10.1016/j.egyai.2024.100451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate classification of battery quality and prediction of battery lifetime before leaving the factory would bring economic and safety benefits. Here, we propose a data-driven approach with machine learning to classify the battery quality and predict the battery lifetime before usage only using formation data. We extract three classes of features from the raw formation data, considering the statistical aspects, differential analysis, and electrochemical characteristics. The correlation between over 100 extracted features and the battery lifetime is analysed based on the ageing mechanisms. Machine learning models are developed to classify battery quality and predict battery lifetime by features with a high correlation with battery ageing. The validation results show that the quality classification model achieved accuracies of 89.74% and 89.47% for the batteries aged at 25°C and 45°C, respectively. Moreover, the lifetime prediction model is able to predict the battery end-of-life with mean percentage errors of 6.50% and 5.45% for the batteries aged at 25°C and 45°C, respectively. This work highlights the potential of battery formation data from production lines in quality classification and lifetime prediction.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"18 \",\"pages\":\"Article 100451\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824001174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Machine learning for battery quality classification and lifetime prediction using formation data
Accurate classification of battery quality and prediction of battery lifetime before leaving the factory would bring economic and safety benefits. Here, we propose a data-driven approach with machine learning to classify the battery quality and predict the battery lifetime before usage only using formation data. We extract three classes of features from the raw formation data, considering the statistical aspects, differential analysis, and electrochemical characteristics. The correlation between over 100 extracted features and the battery lifetime is analysed based on the ageing mechanisms. Machine learning models are developed to classify battery quality and predict battery lifetime by features with a high correlation with battery ageing. The validation results show that the quality classification model achieved accuracies of 89.74% and 89.47% for the batteries aged at 25°C and 45°C, respectively. Moreover, the lifetime prediction model is able to predict the battery end-of-life with mean percentage errors of 6.50% and 5.45% for the batteries aged at 25°C and 45°C, respectively. This work highlights the potential of battery formation data from production lines in quality classification and lifetime prediction.