含漏导声波的二阶非线性混频过程

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2024-11-16 DOI:10.1016/j.ultras.2024.107523
P.D. Pupyrev , I.A. Nedospasov , A.P. Mayer
{"title":"含漏导声波的二阶非线性混频过程","authors":"P.D. Pupyrev ,&nbsp;I.A. Nedospasov ,&nbsp;A.P. Mayer","doi":"10.1016/j.ultras.2024.107523","DOIUrl":null,"url":null,"abstract":"<div><div>Quasi-phasematched mixing processes of acoustic waves via second-order nonlinearity are analyzed with two perfectly guided waves generating a leaky wave. The efficiency of such processes is quantified by an acoustic nonlinearity parameter (ANP), defined as the linear growth rate of the leaky wave’s amplitude in the initial stage of its spatial evolution. Two approximate ways of estimating the ANP of such processes are suggested. The first starts from a stationary solution of the equation of motion and boundary conditions for the displacement field, obtained within perturbation theory. This approach requires the solution of a near-singular linear system of equations. The second is based on the resonant state expansion of the displacement field generated in the mixing process. It allows to express the ANP in the form of an overlap integral, requiring normalization of the displacement field associated with the leaky wave. For leaky output waves with a high degree of localization at the waveguide, both methods yield results in good agreement, as demonstrated for an example system with generalized (2D) plate modes. The first approach has also been applied to finite element calculations of the ANP for nonlinear mixing processes of (1D) edge waves in an elastic plate with rigid faces.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107523"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second-order nonlinear mixing processes involving a leaky guided acoustic wave\",\"authors\":\"P.D. Pupyrev ,&nbsp;I.A. Nedospasov ,&nbsp;A.P. Mayer\",\"doi\":\"10.1016/j.ultras.2024.107523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quasi-phasematched mixing processes of acoustic waves via second-order nonlinearity are analyzed with two perfectly guided waves generating a leaky wave. The efficiency of such processes is quantified by an acoustic nonlinearity parameter (ANP), defined as the linear growth rate of the leaky wave’s amplitude in the initial stage of its spatial evolution. Two approximate ways of estimating the ANP of such processes are suggested. The first starts from a stationary solution of the equation of motion and boundary conditions for the displacement field, obtained within perturbation theory. This approach requires the solution of a near-singular linear system of equations. The second is based on the resonant state expansion of the displacement field generated in the mixing process. It allows to express the ANP in the form of an overlap integral, requiring normalization of the displacement field associated with the leaky wave. For leaky output waves with a high degree of localization at the waveguide, both methods yield results in good agreement, as demonstrated for an example system with generalized (2D) plate modes. The first approach has also been applied to finite element calculations of the ANP for nonlinear mixing processes of (1D) edge waves in an elastic plate with rigid faces.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"147 \",\"pages\":\"Article 107523\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002865\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002865","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

分析了两导波产生漏波的二阶非线性声波准相位匹配混频过程。这些过程的效率通过声学非线性参数(ANP)来量化,该参数定义为泄漏波在空间演化初始阶段振幅的线性增长率。提出了估计这类过程ANP的两种近似方法。第一种是从摄动理论中得到的运动方程和位移场边界条件的平稳解开始的。这种方法要求解一个近似奇异的线性方程组。第二种是基于混合过程中产生的位移场的共振状态展开。它允许以重叠积分的形式表示ANP,这需要对与漏波相关的位移场进行归一化。对于在波导处具有高度局域化的泄漏输出波,两种方法产生的结果非常一致,如一个具有广义(2D)板模的示例系统所示。第一种方法也被应用于具有刚性面的弹性板中(1D)边波非线性混合过程的ANP有限元计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Second-order nonlinear mixing processes involving a leaky guided acoustic wave
Quasi-phasematched mixing processes of acoustic waves via second-order nonlinearity are analyzed with two perfectly guided waves generating a leaky wave. The efficiency of such processes is quantified by an acoustic nonlinearity parameter (ANP), defined as the linear growth rate of the leaky wave’s amplitude in the initial stage of its spatial evolution. Two approximate ways of estimating the ANP of such processes are suggested. The first starts from a stationary solution of the equation of motion and boundary conditions for the displacement field, obtained within perturbation theory. This approach requires the solution of a near-singular linear system of equations. The second is based on the resonant state expansion of the displacement field generated in the mixing process. It allows to express the ANP in the form of an overlap integral, requiring normalization of the displacement field associated with the leaky wave. For leaky output waves with a high degree of localization at the waveguide, both methods yield results in good agreement, as demonstrated for an example system with generalized (2D) plate modes. The first approach has also been applied to finite element calculations of the ANP for nonlinear mixing processes of (1D) edge waves in an elastic plate with rigid faces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Selective focusing through target identification and experimental acoustic signature extraction: Through-aberration experiments Efficient conversion of waterborne acoustic waves into electrical energy by using the phase-reversal Fresnel zone plate Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism Spectral analysis of photoacoustic ultrasound generation in metal-polymer layered structures using a semi-analytical approach Quantitative analysis of variation in photoacoustic guided wave characteristics with bone optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1