增量分量树轮廓计算

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-11-23 DOI:10.1016/j.patrec.2024.11.019
Dennis J. Silva , Jiří Kosinka , Ronaldo F. Hashimoto , Jos B.T.M. Roerdink , Alexandre Morimitsu , Wonder A.L. Alves
{"title":"增量分量树轮廓计算","authors":"Dennis J. Silva ,&nbsp;Jiří Kosinka ,&nbsp;Ronaldo F. Hashimoto ,&nbsp;Jos B.T.M. Roerdink ,&nbsp;Alexandre Morimitsu ,&nbsp;Wonder A.L. Alves","doi":"10.1016/j.patrec.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>A component tree is a graph representation that encodes the connected components of the upper or lower level sets of a grayscale image. Consequently, the nodes of a component tree represent binary images of the encoded connected components. There exist various algorithms that efficiently extract information and attributes of nodes of a component tree by incrementally exploiting the subset relation encoding in the tree. However, to the best of our knowledge, there is no such incremental approach to extract the contours of the nodes. In this paper, we propose an efficient incremental method to compute the contours of the nodes of a component tree by counting the edges (sides) of contour pixels. In addition, we discuss our method’s time complexity. We also experimentally show that our proposed method is faster than the standard approach based on node reconstruction.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 115-121"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental component tree contour computation\",\"authors\":\"Dennis J. Silva ,&nbsp;Jiří Kosinka ,&nbsp;Ronaldo F. Hashimoto ,&nbsp;Jos B.T.M. Roerdink ,&nbsp;Alexandre Morimitsu ,&nbsp;Wonder A.L. Alves\",\"doi\":\"10.1016/j.patrec.2024.11.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A component tree is a graph representation that encodes the connected components of the upper or lower level sets of a grayscale image. Consequently, the nodes of a component tree represent binary images of the encoded connected components. There exist various algorithms that efficiently extract information and attributes of nodes of a component tree by incrementally exploiting the subset relation encoding in the tree. However, to the best of our knowledge, there is no such incremental approach to extract the contours of the nodes. In this paper, we propose an efficient incremental method to compute the contours of the nodes of a component tree by counting the edges (sides) of contour pixels. In addition, we discuss our method’s time complexity. We also experimentally show that our proposed method is faster than the standard approach based on node reconstruction.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"187 \",\"pages\":\"Pages 115-121\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524003258\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003258","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

组件树是一种图形表示,它对灰度图像的上层或下层集的连接组件进行编码。因此,组件树的节点表示编码的连接组件的二值图像。目前已有多种算法通过增量利用组件树中的子集关系编码,有效地提取组件树节点的信息和属性。然而,据我们所知,目前还没有这样的增量方法来提取节点的轮廓。在本文中,我们提出了一种有效的增量方法,通过计算轮廓像素的边(边)来计算组件树节点的轮廓。此外,我们还讨论了该方法的时间复杂度。实验结果表明,该方法比基于节点重构的标准方法更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incremental component tree contour computation
A component tree is a graph representation that encodes the connected components of the upper or lower level sets of a grayscale image. Consequently, the nodes of a component tree represent binary images of the encoded connected components. There exist various algorithms that efficiently extract information and attributes of nodes of a component tree by incrementally exploiting the subset relation encoding in the tree. However, to the best of our knowledge, there is no such incremental approach to extract the contours of the nodes. In this paper, we propose an efficient incremental method to compute the contours of the nodes of a component tree by counting the edges (sides) of contour pixels. In addition, we discuss our method’s time complexity. We also experimentally show that our proposed method is faster than the standard approach based on node reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Bilateral symmetry-based augmentation method for improved tooth segmentation in panoramic X-rays GAF-Net: A new automated segmentation method based on multiscale feature fusion and feedback module Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net Multichannel image classification based on adaptive attribute profiles Incremental component tree contour computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1