多孔氧化钽载体上的先进铱催化剂用于高效质子交换膜电解

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-11-28 DOI:10.1016/j.ijhydene.2024.11.405
Je Yeon Choi, Jong Gyeong Kim, Hyung Joo Lee, Chanho Pak
{"title":"多孔氧化钽载体上的先进铱催化剂用于高效质子交换膜电解","authors":"Je Yeon Choi,&nbsp;Jong Gyeong Kim,&nbsp;Hyung Joo Lee,&nbsp;Chanho Pak","doi":"10.1016/j.ijhydene.2024.11.405","DOIUrl":null,"url":null,"abstract":"<div><div>Reducing the loading of precious metals such as Ir and Pt while maintaining the performance of membrane electrode assembly (MEA) with highly active oxygen evolution reaction (OER) catalysts is a significant challenge in the development of efficient proton exchange membrane water electrolyzers (PEMWEs). This study presents a highly active and cost-effective catalyst consisting of iridium supported on multi-porous tantalum oxide (M−Ta₂O₅), which integrates both macropores and mesopores. The iridium nanostructures supported on the M−Ta<sub>2</sub>O<sub>5</sub> enhance the utilization of Ir and exhibit larger electrochemical surface areas. With a 30 wt% Ir loading, the Ir/M−Ta₂O₅ catalyst demonstrates an overpotential of 290.4 ± 3.5 mV at a current density of 10 mA cm⁻<sup>2</sup> and a mass activity of 730.5 ± 44.6 A g<sub>Ir</sub>⁻<sup>1</sup> at 1.55 V<sub>RHE</sub>. Consequently, Ir/M−Ta<sub>2</sub>O<sub>5</sub> can be effectively utilized to fabricate MEA with an Ir loading of 0.2 mg cm<sup>−2</sup> and Nafion® 115 membrane. At the single-cell level, this catalyst achieves a current density of 2.5 A cm⁻<sup>2</sup> at 1.89 V, underscoring the potential of Ir/M−Ta<sub>2</sub>O<sub>5</sub> as a highly efficient and cost-affordable OER catalyst. This work highlights the promise of Ir/M−Ta₂O₅ in reducing the reliance on precious metals, thereby contributing to the economic and environmental sustainability of PEMWEs.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 57-65"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced iridium catalysts on multi-porous tantalum oxide supports for efficient proton exchange membrane water electrolysis\",\"authors\":\"Je Yeon Choi,&nbsp;Jong Gyeong Kim,&nbsp;Hyung Joo Lee,&nbsp;Chanho Pak\",\"doi\":\"10.1016/j.ijhydene.2024.11.405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reducing the loading of precious metals such as Ir and Pt while maintaining the performance of membrane electrode assembly (MEA) with highly active oxygen evolution reaction (OER) catalysts is a significant challenge in the development of efficient proton exchange membrane water electrolyzers (PEMWEs). This study presents a highly active and cost-effective catalyst consisting of iridium supported on multi-porous tantalum oxide (M−Ta₂O₅), which integrates both macropores and mesopores. The iridium nanostructures supported on the M−Ta<sub>2</sub>O<sub>5</sub> enhance the utilization of Ir and exhibit larger electrochemical surface areas. With a 30 wt% Ir loading, the Ir/M−Ta₂O₅ catalyst demonstrates an overpotential of 290.4 ± 3.5 mV at a current density of 10 mA cm⁻<sup>2</sup> and a mass activity of 730.5 ± 44.6 A g<sub>Ir</sub>⁻<sup>1</sup> at 1.55 V<sub>RHE</sub>. Consequently, Ir/M−Ta<sub>2</sub>O<sub>5</sub> can be effectively utilized to fabricate MEA with an Ir loading of 0.2 mg cm<sup>−2</sup> and Nafion® 115 membrane. At the single-cell level, this catalyst achieves a current density of 2.5 A cm⁻<sup>2</sup> at 1.89 V, underscoring the potential of Ir/M−Ta<sub>2</sub>O<sub>5</sub> as a highly efficient and cost-affordable OER catalyst. This work highlights the promise of Ir/M−Ta₂O₅ in reducing the reliance on precious metals, thereby contributing to the economic and environmental sustainability of PEMWEs.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"97 \",\"pages\":\"Pages 57-65\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924051012\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051012","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

如何在保持膜电极组件(MEA)性能的同时减少Ir和Pt等贵金属的负载,是开发高效质子交换膜水电解槽(PEMWEs)面临的重大挑战。本研究提出了一种高活性和经济高效的催化剂,由铱支撑在多孔氧化钽(M - Ta₂O₅)上,它集成了大孔和介孔。在M−Ta2O5上负载的铱纳米结构提高了Ir的利用率,并表现出更大的电化学表面积。Ir负载为30 wt%时,Ir/M - Ta₂O₅催化剂在电流密度为10 mA cm⁻2时的过电位为290.4±3.5 mV,在1.55 VRHE时的质量活度为7305±44.6 a gIr⁻1。因此,Ir/M - Ta2O5可以有效地用于制备Ir负载为0.2 mg cm - 2的MEA和Nafion®115膜。在单电池水平上,该催化剂在1.89 V下达到2.5 a cm⁻2的电流密度,强调了Ir/M−Ta2O5作为高效且经济实惠的OER催化剂的潜力。这项工作突出了Ir/M - Ta₂O₅在减少对贵金属的依赖方面的承诺,从而有助于PEMWEs的经济和环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced iridium catalysts on multi-porous tantalum oxide supports for efficient proton exchange membrane water electrolysis
Reducing the loading of precious metals such as Ir and Pt while maintaining the performance of membrane electrode assembly (MEA) with highly active oxygen evolution reaction (OER) catalysts is a significant challenge in the development of efficient proton exchange membrane water electrolyzers (PEMWEs). This study presents a highly active and cost-effective catalyst consisting of iridium supported on multi-porous tantalum oxide (M−Ta₂O₅), which integrates both macropores and mesopores. The iridium nanostructures supported on the M−Ta2O5 enhance the utilization of Ir and exhibit larger electrochemical surface areas. With a 30 wt% Ir loading, the Ir/M−Ta₂O₅ catalyst demonstrates an overpotential of 290.4 ± 3.5 mV at a current density of 10 mA cm⁻2 and a mass activity of 730.5 ± 44.6 A gIr1 at 1.55 VRHE. Consequently, Ir/M−Ta2O5 can be effectively utilized to fabricate MEA with an Ir loading of 0.2 mg cm−2 and Nafion® 115 membrane. At the single-cell level, this catalyst achieves a current density of 2.5 A cm⁻2 at 1.89 V, underscoring the potential of Ir/M−Ta2O5 as a highly efficient and cost-affordable OER catalyst. This work highlights the promise of Ir/M−Ta₂O₅ in reducing the reliance on precious metals, thereby contributing to the economic and environmental sustainability of PEMWEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Mesoporous silica-modified metal organic frameworks derived bimetallic electrocatalysts for oxygen reduction reaction in microbial fuel cells Adoption of hydrogen-based steel production under uncertain domestic hydrogen availability: An Indonesian case study Possible role of nanobubbles in the pulsed plasma production of hydrogen Enhanced thermophilic hydrogen production from co-substrate of pretreated waste activated sludge and food waste: Analysis from microbial growth and metabolism Site suitability analysis for green hydrogen production using multi-criteria decision-making methods: A case study in the state of Ceará, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1