热处理薄壁钛焊管的组织、力学性能和耐蚀性研究

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-12-01 DOI:10.1016/j.matchar.2024.114579
Jibing Chen , Yanfeng Liu , Qi Chen , Zhixiong Xie
{"title":"热处理薄壁钛焊管的组织、力学性能和耐蚀性研究","authors":"Jibing Chen ,&nbsp;Yanfeng Liu ,&nbsp;Qi Chen ,&nbsp;Zhixiong Xie","doi":"10.1016/j.matchar.2024.114579","DOIUrl":null,"url":null,"abstract":"<div><div>Thin-wall titanium welded pipe has important applications in the fields of new energy vehicles, aerospace, and heat exchangers, the mechanical properties and corrosion resistance after high-frequency induction welding are rarely studied. To improve the comprehensive performance of thin-walled titanium welded pipe, a heat process and the performance optimization mechanism were studied in this paper. In addition, we systematically explored the influence of heat treatment conditions on the microstructure, mechanical performance, and dissolution behavior of the welded pipe through various methods, including tensile tests, immersion tests, and electrochemical tests. The results indicated that heat treatment primarily regulates the quantity and distribution of martensitic phases, acicular structures, and serrated structures in the welded joints, thereby impacting the mechanical performance of the welded pipe. By following high-temperature annealing at 800 °C for 0.5 h, with a heating rate of 5 °C/min, the acicular and serrated structures in the welded joints completely disappeared, forming an annealed equiaxed structure consistent with the base material. Subsequent furnace cooling reduced internal thermal stresses within the grains, resulting in relatively smooth grain boundaries, reduced small-sized grains, and a more uniform distribution of grain sizes, ultimately eliminating the residual stresses. Consequently, the welded pipe exhibited outstanding comprehensive performance, including ultimate tensile strength, Vickers hardness, and fracture elongation of 439.2 MPa, 178.3 HV, and 18 %, respectively. Notably, under room temperature, after immersion in a 3.5 % sodium chloride solution for 28 days, there was no significant change in the sample's mass. Therefore, the properties of thin-walled titanium welded pipe can be improved by annealing process, and it provides strong support and reliable evidence for its application in related fields.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114579"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of microstructure, mechanical performance, and corrosion resistance of thin-walled titanium welded pipe by annealing process\",\"authors\":\"Jibing Chen ,&nbsp;Yanfeng Liu ,&nbsp;Qi Chen ,&nbsp;Zhixiong Xie\",\"doi\":\"10.1016/j.matchar.2024.114579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thin-wall titanium welded pipe has important applications in the fields of new energy vehicles, aerospace, and heat exchangers, the mechanical properties and corrosion resistance after high-frequency induction welding are rarely studied. To improve the comprehensive performance of thin-walled titanium welded pipe, a heat process and the performance optimization mechanism were studied in this paper. In addition, we systematically explored the influence of heat treatment conditions on the microstructure, mechanical performance, and dissolution behavior of the welded pipe through various methods, including tensile tests, immersion tests, and electrochemical tests. The results indicated that heat treatment primarily regulates the quantity and distribution of martensitic phases, acicular structures, and serrated structures in the welded joints, thereby impacting the mechanical performance of the welded pipe. By following high-temperature annealing at 800 °C for 0.5 h, with a heating rate of 5 °C/min, the acicular and serrated structures in the welded joints completely disappeared, forming an annealed equiaxed structure consistent with the base material. Subsequent furnace cooling reduced internal thermal stresses within the grains, resulting in relatively smooth grain boundaries, reduced small-sized grains, and a more uniform distribution of grain sizes, ultimately eliminating the residual stresses. Consequently, the welded pipe exhibited outstanding comprehensive performance, including ultimate tensile strength, Vickers hardness, and fracture elongation of 439.2 MPa, 178.3 HV, and 18 %, respectively. Notably, under room temperature, after immersion in a 3.5 % sodium chloride solution for 28 days, there was no significant change in the sample's mass. Therefore, the properties of thin-walled titanium welded pipe can be improved by annealing process, and it provides strong support and reliable evidence for its application in related fields.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114579\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324009604\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009604","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

薄壁钛焊管在新能源汽车、航空航天、换热器等领域有重要应用,高频感应焊接后的力学性能和耐腐蚀性能研究较少。为提高薄壁钛焊管的综合性能,研究了薄壁钛焊管的加热工艺及其性能优化机理。此外,通过拉伸试验、浸没试验、电化学试验等多种方法,系统探讨了热处理条件对焊管组织、力学性能和溶解行为的影响。结果表明:热处理主要调节焊接接头中马氏体相、针状组织和锯齿状组织的数量和分布,从而影响焊管的力学性能;在800℃高温退火0.5 h,升温速度5℃/min后,焊接接头中的针状和锯齿状组织完全消失,形成与母材一致的退火等轴组织。随后的炉内冷却降低了晶粒内部的热应力,使得晶界相对光滑,小晶粒减少,晶粒尺寸分布更加均匀,最终消除了残余应力。结果表明,焊管的抗拉强度、维氏硬度和断裂伸长率分别达到439.2 MPa、178.3 HV和18%,综合性能优异。值得注意的是,在室温下,在3.5%氯化钠溶液中浸泡28天后,样品的质量没有明显变化。因此,通过退火工艺可以改善薄壁钛焊管的性能,为其在相关领域的应用提供了强有力的支持和可靠的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of microstructure, mechanical performance, and corrosion resistance of thin-walled titanium welded pipe by annealing process
Thin-wall titanium welded pipe has important applications in the fields of new energy vehicles, aerospace, and heat exchangers, the mechanical properties and corrosion resistance after high-frequency induction welding are rarely studied. To improve the comprehensive performance of thin-walled titanium welded pipe, a heat process and the performance optimization mechanism were studied in this paper. In addition, we systematically explored the influence of heat treatment conditions on the microstructure, mechanical performance, and dissolution behavior of the welded pipe through various methods, including tensile tests, immersion tests, and electrochemical tests. The results indicated that heat treatment primarily regulates the quantity and distribution of martensitic phases, acicular structures, and serrated structures in the welded joints, thereby impacting the mechanical performance of the welded pipe. By following high-temperature annealing at 800 °C for 0.5 h, with a heating rate of 5 °C/min, the acicular and serrated structures in the welded joints completely disappeared, forming an annealed equiaxed structure consistent with the base material. Subsequent furnace cooling reduced internal thermal stresses within the grains, resulting in relatively smooth grain boundaries, reduced small-sized grains, and a more uniform distribution of grain sizes, ultimately eliminating the residual stresses. Consequently, the welded pipe exhibited outstanding comprehensive performance, including ultimate tensile strength, Vickers hardness, and fracture elongation of 439.2 MPa, 178.3 HV, and 18 %, respectively. Notably, under room temperature, after immersion in a 3.5 % sodium chloride solution for 28 days, there was no significant change in the sample's mass. Therefore, the properties of thin-walled titanium welded pipe can be improved by annealing process, and it provides strong support and reliable evidence for its application in related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Microstructure and ablation resistance of C/C-HfC-SiC composites prepared by RMI with different powder particle sizes Simultaneous enhancement of the strength and plasticity of Fe12Mn steel through modulating grain morphology Ex-situ observation of ferrite grain growth behavior in a welded 9Cr-1Mo-V-Nb steel during aging at 740 °C Effect of warm rolling on microstructure evolution and mechanical properties of a Ni–W–Co–Ta medium-heavy alloy Effect of ball milling on densification and alloying in SiCp/Al powder metallurgy processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1