{"title":"全面回顾了石墨烯、微游泳和微流体的最新进展","authors":"Roopsandeep Bammidi , Hymavathi Madivada , Sreeramulu Dowluru","doi":"10.1016/j.nxmate.2024.100435","DOIUrl":null,"url":null,"abstract":"<div><div>The pace of research discoveries depends heavily on the substances employed and micro technologies. However, fascination with graphene and similar two-dimensional materials is growing due to the anticipated significant benefits in terms of both performance enhancement and atomic-scale growth. The prospects for integrating graphene, microswimmers, and microfluidic systems have become more apparent with the advent of new biomedical applications. With excellent mechanical characteristics, electrical and thermal conductivity, and biocompatibility, the material has the potential to revolutionize the delivery of next-generation innovative biomedical devices. This article investigates how these various systems might be coupled in novel ways, for as by imbuing microswimmers with graphene characteristics and using their mobility and the regulated fluidic conditions of microfluidics to achieve new therapeutic and diagnostic goals. Such applications include targeted drug delivery, non-invasive diagnosis, and environmental monitoring, in which the buoyancy of the microswimmer aids in relatively good movement with the fluidic media, aided by the microchannel structure and the microswimmer, which moves precisely through several micro channels. We delve into the challenges, opportunities, and the role of graphene in shaping biological domains relevant to the development of microswimmers and microfluidics. Through this exploration, we aim to uncover pathways for further innovation in biomedical research and application.Top of Form</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100435"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of recent advances in graphene, microswimmers, and microfluidics\",\"authors\":\"Roopsandeep Bammidi , Hymavathi Madivada , Sreeramulu Dowluru\",\"doi\":\"10.1016/j.nxmate.2024.100435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pace of research discoveries depends heavily on the substances employed and micro technologies. However, fascination with graphene and similar two-dimensional materials is growing due to the anticipated significant benefits in terms of both performance enhancement and atomic-scale growth. The prospects for integrating graphene, microswimmers, and microfluidic systems have become more apparent with the advent of new biomedical applications. With excellent mechanical characteristics, electrical and thermal conductivity, and biocompatibility, the material has the potential to revolutionize the delivery of next-generation innovative biomedical devices. This article investigates how these various systems might be coupled in novel ways, for as by imbuing microswimmers with graphene characteristics and using their mobility and the regulated fluidic conditions of microfluidics to achieve new therapeutic and diagnostic goals. Such applications include targeted drug delivery, non-invasive diagnosis, and environmental monitoring, in which the buoyancy of the microswimmer aids in relatively good movement with the fluidic media, aided by the microchannel structure and the microswimmer, which moves precisely through several micro channels. We delve into the challenges, opportunities, and the role of graphene in shaping biological domains relevant to the development of microswimmers and microfluidics. Through this exploration, we aim to uncover pathways for further innovation in biomedical research and application.Top of Form</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"6 \",\"pages\":\"Article 100435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822824003332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comprehensive review of recent advances in graphene, microswimmers, and microfluidics
The pace of research discoveries depends heavily on the substances employed and micro technologies. However, fascination with graphene and similar two-dimensional materials is growing due to the anticipated significant benefits in terms of both performance enhancement and atomic-scale growth. The prospects for integrating graphene, microswimmers, and microfluidic systems have become more apparent with the advent of new biomedical applications. With excellent mechanical characteristics, electrical and thermal conductivity, and biocompatibility, the material has the potential to revolutionize the delivery of next-generation innovative biomedical devices. This article investigates how these various systems might be coupled in novel ways, for as by imbuing microswimmers with graphene characteristics and using their mobility and the regulated fluidic conditions of microfluidics to achieve new therapeutic and diagnostic goals. Such applications include targeted drug delivery, non-invasive diagnosis, and environmental monitoring, in which the buoyancy of the microswimmer aids in relatively good movement with the fluidic media, aided by the microchannel structure and the microswimmer, which moves precisely through several micro channels. We delve into the challenges, opportunities, and the role of graphene in shaping biological domains relevant to the development of microswimmers and microfluidics. Through this exploration, we aim to uncover pathways for further innovation in biomedical research and application.Top of Form