全面回顾了石墨烯、微游泳和微流体的最新进展

Roopsandeep Bammidi , Hymavathi Madivada , Sreeramulu Dowluru
{"title":"全面回顾了石墨烯、微游泳和微流体的最新进展","authors":"Roopsandeep Bammidi ,&nbsp;Hymavathi Madivada ,&nbsp;Sreeramulu Dowluru","doi":"10.1016/j.nxmate.2024.100435","DOIUrl":null,"url":null,"abstract":"<div><div>The pace of research discoveries depends heavily on the substances employed and micro technologies. However, fascination with graphene and similar two-dimensional materials is growing due to the anticipated significant benefits in terms of both performance enhancement and atomic-scale growth. The prospects for integrating graphene, microswimmers, and microfluidic systems have become more apparent with the advent of new biomedical applications. With excellent mechanical characteristics, electrical and thermal conductivity, and biocompatibility, the material has the potential to revolutionize the delivery of next-generation innovative biomedical devices. This article investigates how these various systems might be coupled in novel ways, for as by imbuing microswimmers with graphene characteristics and using their mobility and the regulated fluidic conditions of microfluidics to achieve new therapeutic and diagnostic goals. Such applications include targeted drug delivery, non-invasive diagnosis, and environmental monitoring, in which the buoyancy of the microswimmer aids in relatively good movement with the fluidic media, aided by the microchannel structure and the microswimmer, which moves precisely through several micro channels. We delve into the challenges, opportunities, and the role of graphene in shaping biological domains relevant to the development of microswimmers and microfluidics. Through this exploration, we aim to uncover pathways for further innovation in biomedical research and application.Top of Form</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"6 ","pages":"Article 100435"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of recent advances in graphene, microswimmers, and microfluidics\",\"authors\":\"Roopsandeep Bammidi ,&nbsp;Hymavathi Madivada ,&nbsp;Sreeramulu Dowluru\",\"doi\":\"10.1016/j.nxmate.2024.100435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pace of research discoveries depends heavily on the substances employed and micro technologies. However, fascination with graphene and similar two-dimensional materials is growing due to the anticipated significant benefits in terms of both performance enhancement and atomic-scale growth. The prospects for integrating graphene, microswimmers, and microfluidic systems have become more apparent with the advent of new biomedical applications. With excellent mechanical characteristics, electrical and thermal conductivity, and biocompatibility, the material has the potential to revolutionize the delivery of next-generation innovative biomedical devices. This article investigates how these various systems might be coupled in novel ways, for as by imbuing microswimmers with graphene characteristics and using their mobility and the regulated fluidic conditions of microfluidics to achieve new therapeutic and diagnostic goals. Such applications include targeted drug delivery, non-invasive diagnosis, and environmental monitoring, in which the buoyancy of the microswimmer aids in relatively good movement with the fluidic media, aided by the microchannel structure and the microswimmer, which moves precisely through several micro channels. We delve into the challenges, opportunities, and the role of graphene in shaping biological domains relevant to the development of microswimmers and microfluidics. Through this exploration, we aim to uncover pathways for further innovation in biomedical research and application.Top of Form</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"6 \",\"pages\":\"Article 100435\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822824003332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究发现的速度在很大程度上取决于所使用的物质和微技术。然而,对石墨烯和类似二维材料的迷恋正在增长,因为在性能增强和原子尺度增长方面预期的显着好处。随着新的生物医学应用的出现,集成石墨烯、微游泳和微流体系统的前景变得更加明显。该材料具有优异的机械特性、导电性和导热性以及生物相容性,有可能彻底改变下一代创新生物医学设备的交付。本文研究了这些不同的系统如何以新的方式耦合,例如通过向微游泳者注入石墨烯特性,并利用其流动性和微流体的调节流体条件来实现新的治疗和诊断目标。这些应用包括靶向药物输送、非侵入性诊断和环境监测,在这些应用中,微游动器的浮力在微通道结构和微游动器的帮助下,有助于流体介质的相对良好的运动,微游动器精确地通过几个微通道移动。我们深入研究了石墨烯在塑造与微游泳和微流体发展相关的生物领域中的挑战、机遇和作用。通过这一探索,我们的目标是发现生物医学研究和应用的进一步创新途径。表格顶部
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive review of recent advances in graphene, microswimmers, and microfluidics
The pace of research discoveries depends heavily on the substances employed and micro technologies. However, fascination with graphene and similar two-dimensional materials is growing due to the anticipated significant benefits in terms of both performance enhancement and atomic-scale growth. The prospects for integrating graphene, microswimmers, and microfluidic systems have become more apparent with the advent of new biomedical applications. With excellent mechanical characteristics, electrical and thermal conductivity, and biocompatibility, the material has the potential to revolutionize the delivery of next-generation innovative biomedical devices. This article investigates how these various systems might be coupled in novel ways, for as by imbuing microswimmers with graphene characteristics and using their mobility and the regulated fluidic conditions of microfluidics to achieve new therapeutic and diagnostic goals. Such applications include targeted drug delivery, non-invasive diagnosis, and environmental monitoring, in which the buoyancy of the microswimmer aids in relatively good movement with the fluidic media, aided by the microchannel structure and the microswimmer, which moves precisely through several micro channels. We delve into the challenges, opportunities, and the role of graphene in shaping biological domains relevant to the development of microswimmers and microfluidics. Through this exploration, we aim to uncover pathways for further innovation in biomedical research and application.Top of Form
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of biochar and its metal oxide composites and application on next sustainable electrodes for energy storage devices Role of molecular packing in RTP features of positional isomers: The case study of triimidazo-triazine functionalized with ethynyl pyridine moieties Effects of sputtering process and annealing on the microstructure, crystallization orientation and piezoelectric properties of ZnO films Tunable nonlinear optical properties in polyaniline-multiwalled carbon nanotube (PANI-MWCNT) system probed under pulsed Nd:YAG laser Liquid-phase deposition of α-Fe2O3/n-Si heterojunction thin film photoanode for water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1