摩擦接触问题的稳定性和非分岔准则的推导

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-11-19 DOI:10.1016/j.ijnonlinmec.2024.104960
N. Antoni
{"title":"摩擦接触问题的稳定性和非分岔准则的推导","authors":"N. Antoni","doi":"10.1016/j.ijnonlinmec.2024.104960","DOIUrl":null,"url":null,"abstract":"<div><div>Bifurcation and stability of irreversible systems in plasticity have widely been studied in the literature devoted to Solid Mechanics and are now well understood. The same criteria are of great importance in frictional contact problems as they define the allowable limits of the service domain for frictional contact interfaces prior to their failure due to those mechanisms. In this paper, it is shown that uniqueness, bifurcation and stability in the sense of Hill can be obtained for associated friction, via the established asymptotic equivalence with elastic-perfect plasticity, when the intermediate elastic-plastic layer tends towards the contact interface. The problem formulation and its discretization by the finite element method then lead to the solving of an eigenvalue problem in the vicinity of the limit state for which a static condensation can be performed on the discrete contact interface. The application of the derived stability and non-bifurcation criterion is finally illustrated through two worked examples.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"169 ","pages":"Article 104960"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of a stability and non-bifurcation criterion for frictional contact problems\",\"authors\":\"N. Antoni\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bifurcation and stability of irreversible systems in plasticity have widely been studied in the literature devoted to Solid Mechanics and are now well understood. The same criteria are of great importance in frictional contact problems as they define the allowable limits of the service domain for frictional contact interfaces prior to their failure due to those mechanisms. In this paper, it is shown that uniqueness, bifurcation and stability in the sense of Hill can be obtained for associated friction, via the established asymptotic equivalence with elastic-perfect plasticity, when the intermediate elastic-plastic layer tends towards the contact interface. The problem formulation and its discretization by the finite element method then lead to the solving of an eigenvalue problem in the vicinity of the limit state for which a static condensation can be performed on the discrete contact interface. The application of the derived stability and non-bifurcation criterion is finally illustrated through two worked examples.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"169 \",\"pages\":\"Article 104960\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224003251\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224003251","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

塑性中不可逆体系的分岔和稳定性在固体力学的文献中得到了广泛的研究,现在已经很好地理解了。同样的准则在摩擦接触问题中也非常重要,因为它们在摩擦接触界面由于这些机制而失效之前定义了服务域的允许限制。本文证明了当中间弹塑性层趋向于接触界面时,通过所建立的弹塑性渐近等价,可以得到关联摩擦的唯一性、分岔性和Hill意义上的稳定性。然后用有限元法将问题的表述和离散化,得到在可在离散接触界面上进行静态凝聚的极限状态附近的特征值问题。最后通过两个算例说明了所导出的稳定性和非分岔准则的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivation of a stability and non-bifurcation criterion for frictional contact problems
Bifurcation and stability of irreversible systems in plasticity have widely been studied in the literature devoted to Solid Mechanics and are now well understood. The same criteria are of great importance in frictional contact problems as they define the allowable limits of the service domain for frictional contact interfaces prior to their failure due to those mechanisms. In this paper, it is shown that uniqueness, bifurcation and stability in the sense of Hill can be obtained for associated friction, via the established asymptotic equivalence with elastic-perfect plasticity, when the intermediate elastic-plastic layer tends towards the contact interface. The problem formulation and its discretization by the finite element method then lead to the solving of an eigenvalue problem in the vicinity of the limit state for which a static condensation can be performed on the discrete contact interface. The application of the derived stability and non-bifurcation criterion is finally illustrated through two worked examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives A Lorenz model for an anelastic Oberbeck-Boussinesq system An approximate analytical solution for shear traction in partial reverse slip contacts Corrigendum to “Slip with friction boundary conditions for the Navier–Stokes-α turbulence model and the effects of the friction on the reattachment point” [Int. J. Non–Linear Mech. 159 (2024) 104614] Surface instability of a finitely deformed magnetoelastic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1