听不见的:声发射信号作为全髋关节置换术植入物松动预测因素的基础

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-12-01 DOI:10.1016/j.medengphy.2024.104266
Magnus Reulbach , Longwei Cong , Bernd-Arno Behrens , Eike Jakubowitz
{"title":"听不见的:声发射信号作为全髋关节置换术植入物松动预测因素的基础","authors":"Magnus Reulbach ,&nbsp;Longwei Cong ,&nbsp;Bernd-Arno Behrens ,&nbsp;Eike Jakubowitz","doi":"10.1016/j.medengphy.2024.104266","DOIUrl":null,"url":null,"abstract":"<div><div>Implant loosening remains a primary cause of failure of total hip arthroplasty<span><span><sup>1</sup></span></span> (THA) and is often detected late, when pain occurs. Acoustic emission<span><span><sup>2</sup></span></span> (AE) analysis is a promising method for early loosening detection, on the supposition that relative movements at the bone–implant interface induce detectable AE signals. To distinguish loosening-induced AE signals from those of stable THA components <em>in vitro</em> investigations are necessary. Substituting human with animal bone for such testing could enable simplified and cost-effective sample preparation. The aim of this study was to investigate whether AE signals differ between bone tissues of different species. AE signals generated by relative movements between TiAl<sub>6</sub>V<sub>4</sub> and human, bovine, and porcine cortical bone were investigated. Per species, 125 movements were analyzed, with 26 AE features identified for each movement. The most important time and frequency features of AE signals from human bone differed significantly from those of both animal species. Signals of human origin were longer and exhibited higher rise time. The main frequency components of human AE signals were in a lower frequency range, with a centroid frequency of 113.7 kHz. Based on these differences, it is not advisable to replace human cortical bone with animal bone for AE-related <em>in vitro</em> studies.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"134 ","pages":"Article 104266"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hearing the unheard: Fundamentals of acoustic emission signals as predictors of total hip arthroplasty implant loosening\",\"authors\":\"Magnus Reulbach ,&nbsp;Longwei Cong ,&nbsp;Bernd-Arno Behrens ,&nbsp;Eike Jakubowitz\",\"doi\":\"10.1016/j.medengphy.2024.104266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Implant loosening remains a primary cause of failure of total hip arthroplasty<span><span><sup>1</sup></span></span> (THA) and is often detected late, when pain occurs. Acoustic emission<span><span><sup>2</sup></span></span> (AE) analysis is a promising method for early loosening detection, on the supposition that relative movements at the bone–implant interface induce detectable AE signals. To distinguish loosening-induced AE signals from those of stable THA components <em>in vitro</em> investigations are necessary. Substituting human with animal bone for such testing could enable simplified and cost-effective sample preparation. The aim of this study was to investigate whether AE signals differ between bone tissues of different species. AE signals generated by relative movements between TiAl<sub>6</sub>V<sub>4</sub> and human, bovine, and porcine cortical bone were investigated. Per species, 125 movements were analyzed, with 26 AE features identified for each movement. The most important time and frequency features of AE signals from human bone differed significantly from those of both animal species. Signals of human origin were longer and exhibited higher rise time. The main frequency components of human AE signals were in a lower frequency range, with a centroid frequency of 113.7 kHz. Based on these differences, it is not advisable to replace human cortical bone with animal bone for AE-related <em>in vitro</em> studies.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"134 \",\"pages\":\"Article 104266\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135045332400167X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135045332400167X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

假体松动仍然是全髋关节置换术失败的主要原因,通常在疼痛发生后才发现。声发射(AE)分析是一种很有前途的早期松动检测方法,假设骨-种植体界面的相对运动可以诱发可检测的声发射信号。为了区分松动引起的声发射信号和稳定的THA成分的声发射信号,有必要进行体外研究。用动物骨代替人骨可以简化和具有成本效益的样品制备。本研究的目的是探讨声发射信号在不同物种的骨组织之间是否存在差异。研究了TiAl6V4与人、牛、猪皮质骨相对运动产生的声发射信号。每个物种分析了125个动作,每个动作确定了26个声发射特征。人骨声发射信号最重要的时间和频率特征与两种动物明显不同。人类起源的信号更长,上升时间也更长。人体声发射信号的主要频率成分在较低的频率范围内,质心频率为113.7 kHz。基于这些差异,不宜用动物骨代替人皮质骨进行ae相关的体外研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hearing the unheard: Fundamentals of acoustic emission signals as predictors of total hip arthroplasty implant loosening
Implant loosening remains a primary cause of failure of total hip arthroplasty1 (THA) and is often detected late, when pain occurs. Acoustic emission2 (AE) analysis is a promising method for early loosening detection, on the supposition that relative movements at the bone–implant interface induce detectable AE signals. To distinguish loosening-induced AE signals from those of stable THA components in vitro investigations are necessary. Substituting human with animal bone for such testing could enable simplified and cost-effective sample preparation. The aim of this study was to investigate whether AE signals differ between bone tissues of different species. AE signals generated by relative movements between TiAl6V4 and human, bovine, and porcine cortical bone were investigated. Per species, 125 movements were analyzed, with 26 AE features identified for each movement. The most important time and frequency features of AE signals from human bone differed significantly from those of both animal species. Signals of human origin were longer and exhibited higher rise time. The main frequency components of human AE signals were in a lower frequency range, with a centroid frequency of 113.7 kHz. Based on these differences, it is not advisable to replace human cortical bone with animal bone for AE-related in vitro studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation Influence of surface type on outdoor gait parameters measured using an In-Shoe Motion Sensor System Assessment of pre- and post-operative gait dynamics in total knee arthroplasty by a wearable capture system A novel 3D lightweight model for COVID-19 lung CT Lesion Segmentation ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1