环氧树脂中氧化反应驱动的机械发光

IF 6.3 2区 化学 Q1 POLYMER SCIENCE Polymer Degradation and Stability Pub Date : 2024-11-23 DOI:10.1016/j.polymdegradstab.2024.111101
Baptiste Robbiani, Jean-Louis Augé, Gilbert Teyssèdre
{"title":"环氧树脂中氧化反应驱动的机械发光","authors":"Baptiste Robbiani,&nbsp;Jean-Louis Augé,&nbsp;Gilbert Teyssèdre","doi":"10.1016/j.polymdegradstab.2024.111101","DOIUrl":null,"url":null,"abstract":"<div><div>The luminescence of two imidazole or anhydride cured epoxy resins has been investigated under the combined effect of mechanical stress and temperature using a special experimental setup developed for this purpose. Rupture and cyclic mechanical tests have been conducted in air and in nitrogen between room temperature and 110 °C. Luminescence was acquired through both temporal and spectral acquisitions. Light emission is observed only in air, and fits a Zhurkov model of bond scission. Spectral measurements show that adding a mechanical component to a thermal stress does not excite new molecular groups, indicating that degradation mechanisms under thermal stress or both thermal and mechanical stresses could be similar. A simple two-step model is proposed to describe luminescence as a combination of bond scission and light decay.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"232 ","pages":"Article 111101"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanoluminescence driven by oxidation reactions in epoxy resins\",\"authors\":\"Baptiste Robbiani,&nbsp;Jean-Louis Augé,&nbsp;Gilbert Teyssèdre\",\"doi\":\"10.1016/j.polymdegradstab.2024.111101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The luminescence of two imidazole or anhydride cured epoxy resins has been investigated under the combined effect of mechanical stress and temperature using a special experimental setup developed for this purpose. Rupture and cyclic mechanical tests have been conducted in air and in nitrogen between room temperature and 110 °C. Luminescence was acquired through both temporal and spectral acquisitions. Light emission is observed only in air, and fits a Zhurkov model of bond scission. Spectral measurements show that adding a mechanical component to a thermal stress does not excite new molecular groups, indicating that degradation mechanisms under thermal stress or both thermal and mechanical stresses could be similar. A simple two-step model is proposed to describe luminescence as a combination of bond scission and light decay.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"232 \",\"pages\":\"Article 111101\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024004440\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004440","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

采用专门的实验装置,研究了两种咪唑或酸酐固化环氧树脂在机械应力和温度共同作用下的发光特性。在室温至110°C之间的空气和氮气中进行了断裂和循环力学试验。通过时间和光谱采集获得发光。光发射只在空气中观察到,并且符合键断裂的朱尔科夫模型。光谱测量表明,在热应力中加入机械成分不会激发新的分子基团,这表明热应力或热应力和机械应力下的降解机制可能相似。提出了一个简单的两步模型,将发光描述为键断裂和光衰减的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanoluminescence driven by oxidation reactions in epoxy resins
The luminescence of two imidazole or anhydride cured epoxy resins has been investigated under the combined effect of mechanical stress and temperature using a special experimental setup developed for this purpose. Rupture and cyclic mechanical tests have been conducted in air and in nitrogen between room temperature and 110 °C. Luminescence was acquired through both temporal and spectral acquisitions. Light emission is observed only in air, and fits a Zhurkov model of bond scission. Spectral measurements show that adding a mechanical component to a thermal stress does not excite new molecular groups, indicating that degradation mechanisms under thermal stress or both thermal and mechanical stresses could be similar. A simple two-step model is proposed to describe luminescence as a combination of bond scission and light decay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
期刊最新文献
Alcohol degradation of anhydride-cured epoxy resin insulations and the properties of recycled materials Thermal oxidative aging behavior and lifetime prediction of fluoroether rubber Influence of surface chemical modifications on enhancing the aging behavior of capacitor biaxially-oriented polypropylene thin film Efficient degradation and recycling of carbon fiber reinforced epoxy composite wastes under mild conditions by constructing dual dynamic covalent networks Mechanoluminescence driven by oxidation reactions in epoxy resins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1