{"title":"环氧树脂中氧化反应驱动的机械发光","authors":"Baptiste Robbiani, Jean-Louis Augé, Gilbert Teyssèdre","doi":"10.1016/j.polymdegradstab.2024.111101","DOIUrl":null,"url":null,"abstract":"<div><div>The luminescence of two imidazole or anhydride cured epoxy resins has been investigated under the combined effect of mechanical stress and temperature using a special experimental setup developed for this purpose. Rupture and cyclic mechanical tests have been conducted in air and in nitrogen between room temperature and 110 °C. Luminescence was acquired through both temporal and spectral acquisitions. Light emission is observed only in air, and fits a Zhurkov model of bond scission. Spectral measurements show that adding a mechanical component to a thermal stress does not excite new molecular groups, indicating that degradation mechanisms under thermal stress or both thermal and mechanical stresses could be similar. A simple two-step model is proposed to describe luminescence as a combination of bond scission and light decay.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"232 ","pages":"Article 111101"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanoluminescence driven by oxidation reactions in epoxy resins\",\"authors\":\"Baptiste Robbiani, Jean-Louis Augé, Gilbert Teyssèdre\",\"doi\":\"10.1016/j.polymdegradstab.2024.111101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The luminescence of two imidazole or anhydride cured epoxy resins has been investigated under the combined effect of mechanical stress and temperature using a special experimental setup developed for this purpose. Rupture and cyclic mechanical tests have been conducted in air and in nitrogen between room temperature and 110 °C. Luminescence was acquired through both temporal and spectral acquisitions. Light emission is observed only in air, and fits a Zhurkov model of bond scission. Spectral measurements show that adding a mechanical component to a thermal stress does not excite new molecular groups, indicating that degradation mechanisms under thermal stress or both thermal and mechanical stresses could be similar. A simple two-step model is proposed to describe luminescence as a combination of bond scission and light decay.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"232 \",\"pages\":\"Article 111101\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024004440\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004440","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanoluminescence driven by oxidation reactions in epoxy resins
The luminescence of two imidazole or anhydride cured epoxy resins has been investigated under the combined effect of mechanical stress and temperature using a special experimental setup developed for this purpose. Rupture and cyclic mechanical tests have been conducted in air and in nitrogen between room temperature and 110 °C. Luminescence was acquired through both temporal and spectral acquisitions. Light emission is observed only in air, and fits a Zhurkov model of bond scission. Spectral measurements show that adding a mechanical component to a thermal stress does not excite new molecular groups, indicating that degradation mechanisms under thermal stress or both thermal and mechanical stresses could be similar. A simple two-step model is proposed to describe luminescence as a combination of bond scission and light decay.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.