TPU用聚合物基磷酰胺阻燃剂:增强阻燃性,同时保持透明度和机械性能

IF 6.3 2区 化学 Q1 POLYMER SCIENCE Polymer Degradation and Stability Pub Date : 2024-11-23 DOI:10.1016/j.polymdegradstab.2024.111103
Haoran Shi , Yajun Chen , Fenghao Hao , Lijun Qian
{"title":"TPU用聚合物基磷酰胺阻燃剂:增强阻燃性,同时保持透明度和机械性能","authors":"Haoran Shi ,&nbsp;Yajun Chen ,&nbsp;Fenghao Hao ,&nbsp;Lijun Qian","doi":"10.1016/j.polymdegradstab.2024.111103","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a polymeric flame retardant (POP) containing a phosphoramidite bond was synthesized from piperazine and phenyl dichlorophosphate. The chemical structure of POP was confirmed using FTIR, TGA, DSC, <sup>1</sup>H NMR, <sup>31</sup>P NMR, <sup>13</sup>C NMR and PY-GC–MS. Adding POP to TPU significantly improved its flame retardancy while maintaining its mechanical properties and transparency. Only 3 wt% of POP reduced the peak heat release rate (PHRR) of the TPU composite by 50.1 %. With increasing POP content, the PHRR and total heat release (THR) of the TPU composites decreased further, and the char residue increased. At 15 % POP, the THR and PHRR of TPU decreased by 40.7 % and 60.2 %, with char residue reaching 21.6 %. Moreover, when the amount of POP was 30 %, the TPU composite reached a LOI value of 29.2 %, passing UL 94 V-0 level. The improved flame retardancy resulted from the prior concentrated emission of CO<sub>2</sub> in the gaseous phase and the creation of denser, more graphitized char residue within the condensed phase. Additionally, the excellent compatibility between POP and TPU ensured minimal impact on the mechanical properties and transparency. The tensile strength, elongation at break, and transmittance of TPU/15 % POP were 40.2 MPa, 525 %, and 81.5 %, nearly matching the performance of pure TPU.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"232 ","pages":"Article 111103"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer-based phosphoramidite flame retardant for TPU: Enhanced fire resistance with preserved transparency and mechanical properties\",\"authors\":\"Haoran Shi ,&nbsp;Yajun Chen ,&nbsp;Fenghao Hao ,&nbsp;Lijun Qian\",\"doi\":\"10.1016/j.polymdegradstab.2024.111103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a polymeric flame retardant (POP) containing a phosphoramidite bond was synthesized from piperazine and phenyl dichlorophosphate. The chemical structure of POP was confirmed using FTIR, TGA, DSC, <sup>1</sup>H NMR, <sup>31</sup>P NMR, <sup>13</sup>C NMR and PY-GC–MS. Adding POP to TPU significantly improved its flame retardancy while maintaining its mechanical properties and transparency. Only 3 wt% of POP reduced the peak heat release rate (PHRR) of the TPU composite by 50.1 %. With increasing POP content, the PHRR and total heat release (THR) of the TPU composites decreased further, and the char residue increased. At 15 % POP, the THR and PHRR of TPU decreased by 40.7 % and 60.2 %, with char residue reaching 21.6 %. Moreover, when the amount of POP was 30 %, the TPU composite reached a LOI value of 29.2 %, passing UL 94 V-0 level. The improved flame retardancy resulted from the prior concentrated emission of CO<sub>2</sub> in the gaseous phase and the creation of denser, more graphitized char residue within the condensed phase. Additionally, the excellent compatibility between POP and TPU ensured minimal impact on the mechanical properties and transparency. The tensile strength, elongation at break, and transmittance of TPU/15 % POP were 40.2 MPa, 525 %, and 81.5 %, nearly matching the performance of pure TPU.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"232 \",\"pages\":\"Article 111103\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024004464\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文以哌嗪和二氯磷酸苯为原料合成了一种含酰胺磷键的聚合物阻燃剂。采用FTIR、TGA、DSC、1H NMR、31P NMR、13C NMR和PY-GC-MS等方法对POP的化学结构进行了确证。在TPU中加入POP可显著改善其阻燃性,同时保持其机械性能和透明度。仅3 wt%的POP使TPU复合材料的峰值放热率(PHRR)降低了50.1%。随着POP含量的增加,TPU复合材料的PHRR和总放热率进一步降低,炭渣增加。在15% POP下,TPU的THR和PHRR分别下降了40.7%和60.2%,炭渣达到21.6%。当POP添加量为30%时,TPU复合材料的LOI值达到29.2%,达到UL 94 V-0标准。阻燃性能的提高是由于在气相中预先集中排放CO2,并在凝聚相中产生更致密、石墨化程度更高的炭渣。此外,POP和TPU之间的良好相容性确保了对机械性能和透明度的影响最小。TPU/ 15% POP的拉伸强度、断裂伸长率和透光率分别为40.2 MPa、525%和81.5%,与纯TPU性能接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer-based phosphoramidite flame retardant for TPU: Enhanced fire resistance with preserved transparency and mechanical properties
In this work, a polymeric flame retardant (POP) containing a phosphoramidite bond was synthesized from piperazine and phenyl dichlorophosphate. The chemical structure of POP was confirmed using FTIR, TGA, DSC, 1H NMR, 31P NMR, 13C NMR and PY-GC–MS. Adding POP to TPU significantly improved its flame retardancy while maintaining its mechanical properties and transparency. Only 3 wt% of POP reduced the peak heat release rate (PHRR) of the TPU composite by 50.1 %. With increasing POP content, the PHRR and total heat release (THR) of the TPU composites decreased further, and the char residue increased. At 15 % POP, the THR and PHRR of TPU decreased by 40.7 % and 60.2 %, with char residue reaching 21.6 %. Moreover, when the amount of POP was 30 %, the TPU composite reached a LOI value of 29.2 %, passing UL 94 V-0 level. The improved flame retardancy resulted from the prior concentrated emission of CO2 in the gaseous phase and the creation of denser, more graphitized char residue within the condensed phase. Additionally, the excellent compatibility between POP and TPU ensured minimal impact on the mechanical properties and transparency. The tensile strength, elongation at break, and transmittance of TPU/15 % POP were 40.2 MPa, 525 %, and 81.5 %, nearly matching the performance of pure TPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
期刊最新文献
Alcohol degradation of anhydride-cured epoxy resin insulations and the properties of recycled materials Thermal oxidative aging behavior and lifetime prediction of fluoroether rubber Influence of surface chemical modifications on enhancing the aging behavior of capacitor biaxially-oriented polypropylene thin film Efficient degradation and recycling of carbon fiber reinforced epoxy composite wastes under mild conditions by constructing dual dynamic covalent networks Mechanoluminescence driven by oxidation reactions in epoxy resins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1