具有相等簇容量的公平聚类集成

Peng Zhou;Rongwen Li;Zhaolong Ling;Liang Du;Xinwang Liu
{"title":"具有相等簇容量的公平聚类集成","authors":"Peng Zhou;Rongwen Li;Zhaolong Ling;Liang Du;Xinwang Liu","doi":"10.1109/TPAMI.2024.3507857","DOIUrl":null,"url":null,"abstract":"Clustering ensemble has been widely studied in data mining and machine learning. However, the existing clustering ensemble methods do not pay attention to fairness, which is important in real-world applications, especially in applications involving humans. To address this issue, this paper proposes a novel fair clustering ensemble method, which takes multiple base clustering results as inputs and learns a fair consensus clustering result. When designing the algorithm, we observe that one of the widely used definitions of fairness may cause a cluster imbalance problem. To tackle this problem, we give a new definition of fairness that can simultaneously characterize fairness and cluster capacity equality. Based on this new definition, we design an extremely simple yet effective regularized term to achieve fairness and cluster capacity equality. We plug this regularized term into our clustering ensemble framework, finally leading to our new fair clustering ensemble method. The extensive experiments show that, compared with the state-of-the-art clustering ensemble methods, our method can not only achieve a comparable or even better clustering performance, but also obtain a much fairer and better capacity equality result, which well demonstrates the effectiveness and superiority of our method.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"1729-1746"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair Clustering Ensemble With Equal Cluster Capacity\",\"authors\":\"Peng Zhou;Rongwen Li;Zhaolong Ling;Liang Du;Xinwang Liu\",\"doi\":\"10.1109/TPAMI.2024.3507857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering ensemble has been widely studied in data mining and machine learning. However, the existing clustering ensemble methods do not pay attention to fairness, which is important in real-world applications, especially in applications involving humans. To address this issue, this paper proposes a novel fair clustering ensemble method, which takes multiple base clustering results as inputs and learns a fair consensus clustering result. When designing the algorithm, we observe that one of the widely used definitions of fairness may cause a cluster imbalance problem. To tackle this problem, we give a new definition of fairness that can simultaneously characterize fairness and cluster capacity equality. Based on this new definition, we design an extremely simple yet effective regularized term to achieve fairness and cluster capacity equality. We plug this regularized term into our clustering ensemble framework, finally leading to our new fair clustering ensemble method. The extensive experiments show that, compared with the state-of-the-art clustering ensemble methods, our method can not only achieve a comparable or even better clustering performance, but also obtain a much fairer and better capacity equality result, which well demonstrates the effectiveness and superiority of our method.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 3\",\"pages\":\"1729-1746\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770826/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770826/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fair Clustering Ensemble With Equal Cluster Capacity
Clustering ensemble has been widely studied in data mining and machine learning. However, the existing clustering ensemble methods do not pay attention to fairness, which is important in real-world applications, especially in applications involving humans. To address this issue, this paper proposes a novel fair clustering ensemble method, which takes multiple base clustering results as inputs and learns a fair consensus clustering result. When designing the algorithm, we observe that one of the widely used definitions of fairness may cause a cluster imbalance problem. To tackle this problem, we give a new definition of fairness that can simultaneously characterize fairness and cluster capacity equality. Based on this new definition, we design an extremely simple yet effective regularized term to achieve fairness and cluster capacity equality. We plug this regularized term into our clustering ensemble framework, finally leading to our new fair clustering ensemble method. The extensive experiments show that, compared with the state-of-the-art clustering ensemble methods, our method can not only achieve a comparable or even better clustering performance, but also obtain a much fairer and better capacity equality result, which well demonstrates the effectiveness and superiority of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1