基于带空腔BP神经网络的复杂地形地震变化预测模型

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS pure and applied geophysics Pub Date : 2024-11-05 DOI:10.1007/s00024-024-03589-8
Yanan Li, Hong Zhou
{"title":"基于带空腔BP神经网络的复杂地形地震变化预测模型","authors":"Yanan Li,&nbsp;Hong Zhou","doi":"10.1007/s00024-024-03589-8","DOIUrl":null,"url":null,"abstract":"<div><p>Surface irregularities and subsurface cavities have a significant impact on seismic wave propagation, leading to either amplification or reduction of ground motion. This study focuses on creating a ground motion prediction model using artificial neural network techniques driven by a synthetically generated database. In this study, we focus on the Erlang Mountain region in Sichuan Province, China, to simulate surface ground motion using the spectral element method, considering the presence of underground cavities in the research area. The classical back propagation neural network model is used to predict changes in ground motion. The model is designed to forecast the PGA influence coefficient, and 5% damped PSV amplification ratio (for periods ranging from 0.33 to 10 s). Input parameters include the buried depth of the cavity, the distance between the surface and the cavity in the mountain projection, elevation, the first gradient of the elevation, and the second-order gradient in two orthogonal directions. The model’s performance falls within acceptable error limits. Additionally, the significance of input features is analyzed, and the model’s applicability in other regions of the ErLang Mountain is validated.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 10","pages":"3133 - 3147"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Prediction Model of Seismic Variation in Complex Terrain based on the BP Neural Network with Cavities\",\"authors\":\"Yanan Li,&nbsp;Hong Zhou\",\"doi\":\"10.1007/s00024-024-03589-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface irregularities and subsurface cavities have a significant impact on seismic wave propagation, leading to either amplification or reduction of ground motion. This study focuses on creating a ground motion prediction model using artificial neural network techniques driven by a synthetically generated database. In this study, we focus on the Erlang Mountain region in Sichuan Province, China, to simulate surface ground motion using the spectral element method, considering the presence of underground cavities in the research area. The classical back propagation neural network model is used to predict changes in ground motion. The model is designed to forecast the PGA influence coefficient, and 5% damped PSV amplification ratio (for periods ranging from 0.33 to 10 s). Input parameters include the buried depth of the cavity, the distance between the surface and the cavity in the mountain projection, elevation, the first gradient of the elevation, and the second-order gradient in two orthogonal directions. The model’s performance falls within acceptable error limits. Additionally, the significance of input features is analyzed, and the model’s applicability in other regions of the ErLang Mountain is validated.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"181 10\",\"pages\":\"3133 - 3147\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-024-03589-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03589-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地表不规则性和地下空腔对地震波的传播有重要影响,会导致地震动的放大或减弱。本研究的重点是在综合生成的数据库驱动下,利用人工神经网络技术建立地震动预测模型。本文以四川二郎山地区为研究对象,考虑地下空腔的存在,采用谱元法模拟地表运动。采用经典的反向传播神经网络模型预测地震动的变化。该模型用于预测PGA影响系数和5%阻尼PSV放大比(周期范围为0.33 ~ 10 s),输入参数包括空腔埋深、山体投影中地表与空腔的距离、高程、高程的一阶梯度和两个正交方向上的二阶梯度。模型的性能在可接受的误差范围内。分析了输入特征的重要性,验证了该模型在二郎山其他地区的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Prediction Model of Seismic Variation in Complex Terrain based on the BP Neural Network with Cavities

Surface irregularities and subsurface cavities have a significant impact on seismic wave propagation, leading to either amplification or reduction of ground motion. This study focuses on creating a ground motion prediction model using artificial neural network techniques driven by a synthetically generated database. In this study, we focus on the Erlang Mountain region in Sichuan Province, China, to simulate surface ground motion using the spectral element method, considering the presence of underground cavities in the research area. The classical back propagation neural network model is used to predict changes in ground motion. The model is designed to forecast the PGA influence coefficient, and 5% damped PSV amplification ratio (for periods ranging from 0.33 to 10 s). Input parameters include the buried depth of the cavity, the distance between the surface and the cavity in the mountain projection, elevation, the first gradient of the elevation, and the second-order gradient in two orthogonal directions. The model’s performance falls within acceptable error limits. Additionally, the significance of input features is analyzed, and the model’s applicability in other regions of the ErLang Mountain is validated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
期刊最新文献
Relationship between TTI and Various Thunderstorm Related Parameters over Kerala, India Frequency-dependent Layered Q Model and Attenuation Tomography of the Himachal North-West Himalaya, India: Insight to Explore Crustal Variation Adaptive Window Approach for Curie Depth Calculation Based on Modified Centroid Method and the Application in the South China Block Modeling the Ventilation of the Vortex Periphery for Anticyclonic Quasi-Permanent Lofoten Vortex Stable Distribution of Fractional Fluctuations of Well Log Data in Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1