添加Mg/Sr的硼硅酸盐生物活性玻璃增强人脂肪来源的干细胞成骨承诺和血管生成特性

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2024-11-30 DOI:10.1007/s10856-024-06830-x
Jenna M. Tainio, Sari Vanhatupa, Susanna Miettinen, Jonathan Massera
{"title":"添加Mg/Sr的硼硅酸盐生物活性玻璃增强人脂肪来源的干细胞成骨承诺和血管生成特性","authors":"Jenna M. Tainio,&nbsp;Sari Vanhatupa,&nbsp;Susanna Miettinen,&nbsp;Jonathan Massera","doi":"10.1007/s10856-024-06830-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO<sub>2</sub> - 6.73 B<sub>2</sub>O<sub>3</sub> - 21.77-x-y CaO - 22.65 Na<sub>2</sub>O - 1.72 P<sub>2</sub>O<sub>5</sub> - x MgO - y SrO (mol%). These compositions are based on silicate S53P4 bioactive glass, from where 12.5% of SiO<sub>2</sub> is replaced with B<sub>2</sub>O<sub>3</sub>, and additionally, part of CaO is substituted for MgO and/or SrO. The impact of ion release, both as extract and in direct contact, on human adipose-derived stem cells’ (hADSCs) viability, proliferation, ECM maturation, osteogenic commitment and endothelial marker expression was assessed. Osteogenic media supplements were utilized with the extracts, and in part of the direct cell/material culturing conditions. While it has been reported in other studies that boron release can induce cytotoxicity, the glasses in this study supported cells viability and proliferation. Moreover, borosilicate’s, especially with further Mg/Sr substitutions, upregulated several osteogenic markers (such as <i>RUNX2a, OSTERIX, DLX5, OSTEOPONTIN</i>), as well as angiogenic factors (e.g., <i>vWF</i> and <i>PECAM-1</i>). Furthermore, the studied glasses supported collagen-I production even in the absence of osteogenic supplements, when hADSCs were cultured in contact with the glasses, suggesting that while the bioactive glass degradation products are beneficial for osteogenesis, the glasses surface physico-chemical properties play a significant role on hADSCs differentiation. This study brings critical information on the impact of bioactive glass compositional modification to control glass dissolution and the subsequent influence on stem cells proliferation and differentiation. Furthermore, the role of the material surface chemistry on promoting cell differentiation is reported.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06830-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Borosilicate bioactive glasses with added Mg/Sr enhances human adipose-derived stem cells osteogenic commitment and angiogenic properties\",\"authors\":\"Jenna M. Tainio,&nbsp;Sari Vanhatupa,&nbsp;Susanna Miettinen,&nbsp;Jonathan Massera\",\"doi\":\"10.1007/s10856-024-06830-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO<sub>2</sub> - 6.73 B<sub>2</sub>O<sub>3</sub> - 21.77-x-y CaO - 22.65 Na<sub>2</sub>O - 1.72 P<sub>2</sub>O<sub>5</sub> - x MgO - y SrO (mol%). These compositions are based on silicate S53P4 bioactive glass, from where 12.5% of SiO<sub>2</sub> is replaced with B<sub>2</sub>O<sub>3</sub>, and additionally, part of CaO is substituted for MgO and/or SrO. The impact of ion release, both as extract and in direct contact, on human adipose-derived stem cells’ (hADSCs) viability, proliferation, ECM maturation, osteogenic commitment and endothelial marker expression was assessed. Osteogenic media supplements were utilized with the extracts, and in part of the direct cell/material culturing conditions. While it has been reported in other studies that boron release can induce cytotoxicity, the glasses in this study supported cells viability and proliferation. Moreover, borosilicate’s, especially with further Mg/Sr substitutions, upregulated several osteogenic markers (such as <i>RUNX2a, OSTERIX, DLX5, OSTEOPONTIN</i>), as well as angiogenic factors (e.g., <i>vWF</i> and <i>PECAM-1</i>). Furthermore, the studied glasses supported collagen-I production even in the absence of osteogenic supplements, when hADSCs were cultured in contact with the glasses, suggesting that while the bioactive glass degradation products are beneficial for osteogenesis, the glasses surface physico-chemical properties play a significant role on hADSCs differentiation. This study brings critical information on the impact of bioactive glass compositional modification to control glass dissolution and the subsequent influence on stem cells proliferation and differentiation. Furthermore, the role of the material surface chemistry on promoting cell differentiation is reported.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-024-06830-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-024-06830-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06830-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物活性玻璃是骨组织工程中最有前途的材料之一。本研究的重点是硼硅酸盐生物活性玻璃,其组成为47.12 SiO2 - 6.73 B2O3 - 21.77-x-y CaO - 22.65 Na2O - 1.72 P2O5 -x MgO -y SrO (mol%)。这些组合物以硅酸S53P4生物活性玻璃为基础,其中12.5%的SiO2被B2O3取代,另外,部分CaO被MgO和/或SrO取代。评估了离子释放(无论是提取物还是直接接触)对人脂肪源性干细胞(hADSCs)活力、增殖、ECM成熟、成骨承诺和内皮标志物表达的影响。在部分直接的细胞/物质培养条件下,利用提取物补充成骨培养基。虽然在其他研究中已经报道硼释放可以诱导细胞毒性,但本研究中的玻璃支持细胞活力和增殖。此外,硼硅酸盐,特别是进一步的Mg/Sr取代,上调了几种成骨标志物(如RUNX2a, OSTERIX, DLX5, OSTEOPONTIN),以及血管生成因子(如vWF和PECAM-1)。此外,即使在没有成骨补充剂的情况下,当hascs与玻璃接触培养时,所研究的玻璃也支持胶原- i的产生,这表明尽管生物活性玻璃降解产物有利于成骨,但玻璃表面的物理化学性质对hascs的分化起着重要作用。该研究为生物活性玻璃组分修饰对控制玻璃溶解以及随后对干细胞增殖和分化的影响提供了重要信息。此外,还报道了材料表面化学在促进细胞分化中的作用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Borosilicate bioactive glasses with added Mg/Sr enhances human adipose-derived stem cells osteogenic commitment and angiogenic properties

Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO2 - 6.73 B2O3 - 21.77-x-y CaO - 22.65 Na2O - 1.72 P2O5 - x MgO - y SrO (mol%). These compositions are based on silicate S53P4 bioactive glass, from where 12.5% of SiO2 is replaced with B2O3, and additionally, part of CaO is substituted for MgO and/or SrO. The impact of ion release, both as extract and in direct contact, on human adipose-derived stem cells’ (hADSCs) viability, proliferation, ECM maturation, osteogenic commitment and endothelial marker expression was assessed. Osteogenic media supplements were utilized with the extracts, and in part of the direct cell/material culturing conditions. While it has been reported in other studies that boron release can induce cytotoxicity, the glasses in this study supported cells viability and proliferation. Moreover, borosilicate’s, especially with further Mg/Sr substitutions, upregulated several osteogenic markers (such as RUNX2a, OSTERIX, DLX5, OSTEOPONTIN), as well as angiogenic factors (e.g., vWF and PECAM-1). Furthermore, the studied glasses supported collagen-I production even in the absence of osteogenic supplements, when hADSCs were cultured in contact with the glasses, suggesting that while the bioactive glass degradation products are beneficial for osteogenesis, the glasses surface physico-chemical properties play a significant role on hADSCs differentiation. This study brings critical information on the impact of bioactive glass compositional modification to control glass dissolution and the subsequent influence on stem cells proliferation and differentiation. Furthermore, the role of the material surface chemistry on promoting cell differentiation is reported.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Impact of Gd, Pr, Yb, and Nd doping on the magnetic properties of Mg-ferrite nanoparticles In vivo bone regeneration performance of hydroxypropyl methylcellulose hydrogel-based composite bone cements in ovariectomized and ovary-intact rats: a preliminary investigation Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury Anodized Ti6Al4V-ELI, electroplated with copper is bactericidal against Staphylococcus aureus and enhances macrophage phagocytosis Unraveling the immunomodulatory and metabolic effects of bioactive glass S53P4 on macrophages in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1