基于生成对抗网络(GAN)模型的有效SARS-CoV-2 Mpro抑制剂设计,利用配体的电子密度和3D结合口袋:来自分子对接、动力学模拟和MM-GBSA分析的见解

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-11-30 DOI:10.1007/s11030-024-11047-9
Annesha Chakraborty, Vignesh Krishnan, Subbiah Thamotharan
{"title":"基于生成对抗网络(GAN)模型的有效SARS-CoV-2 Mpro抑制剂设计,利用配体的电子密度和3D结合口袋:来自分子对接、动力学模拟和MM-GBSA分析的见解","authors":"Annesha Chakraborty, Vignesh Krishnan, Subbiah Thamotharan","doi":"10.1007/s11030-024-11047-9","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning-based generative adversarial network (GAN) frameworks have recently been developed to expedite the drug discovery process. These models generate novel molecules from scratch and validate them through molecular docking simulation to identify the most promising candidates for a given drug target. In this study, the SARS-CoV-2 main protease (M<sup>pro</sup>) was selected as the drug target. Two distinct GAN algorithms were employed to generate novel small molecules. One approach utilized experimental electron density (ED-based) data of ligands for training to generate drug-like molecules, while the second approach leveraged the target binding pocket to capture spatial and bonding relationship between atoms within the binding pockets. The ED-based approach generated approximately 26,000 molecules, whereas the binding pocket-based method produced around 100 molecules. These generated molecules were subsequently ranked based on molecular docking results using the glide XP score (both flexible and rigid docking) and AutoDock Vina. To identify the most potent GAN-derived molecules, molecular docking was also performed on co-crystallized inhibitor molecules of M<sup>pro</sup>. The six most promising molecules from these GAN approaches were further evaluated for stability, interactions, and MM-GBSA binding free energy through molecular dynamics simulations. This analysis led to the identification of four potent M<sup>pro</sup> inhibitor molecules, all featuring a 2-benzyl-6-bromophenol scaffold. The binding free energies of these compounds were compared with those of other M<sup>pro</sup> inhibitors, revealing that our compounds demonstrated better affinity for M<sup>pro</sup> than some broad-spectrum protease inhibitors. The dynamic cross-correlation matrix plot indicated strongly correlated and anti-correlated regions, potentially linked to ligand binding.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative adversarial network (GAN) model-based design of potent SARS-CoV-2 M<sup>pro</sup> inhibitors using the electron density of ligands and 3D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis.\",\"authors\":\"Annesha Chakraborty, Vignesh Krishnan, Subbiah Thamotharan\",\"doi\":\"10.1007/s11030-024-11047-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning-based generative adversarial network (GAN) frameworks have recently been developed to expedite the drug discovery process. These models generate novel molecules from scratch and validate them through molecular docking simulation to identify the most promising candidates for a given drug target. In this study, the SARS-CoV-2 main protease (M<sup>pro</sup>) was selected as the drug target. Two distinct GAN algorithms were employed to generate novel small molecules. One approach utilized experimental electron density (ED-based) data of ligands for training to generate drug-like molecules, while the second approach leveraged the target binding pocket to capture spatial and bonding relationship between atoms within the binding pockets. The ED-based approach generated approximately 26,000 molecules, whereas the binding pocket-based method produced around 100 molecules. These generated molecules were subsequently ranked based on molecular docking results using the glide XP score (both flexible and rigid docking) and AutoDock Vina. To identify the most potent GAN-derived molecules, molecular docking was also performed on co-crystallized inhibitor molecules of M<sup>pro</sup>. The six most promising molecules from these GAN approaches were further evaluated for stability, interactions, and MM-GBSA binding free energy through molecular dynamics simulations. This analysis led to the identification of four potent M<sup>pro</sup> inhibitor molecules, all featuring a 2-benzyl-6-bromophenol scaffold. The binding free energies of these compounds were compared with those of other M<sup>pro</sup> inhibitors, revealing that our compounds demonstrated better affinity for M<sup>pro</sup> than some broad-spectrum protease inhibitors. The dynamic cross-correlation matrix plot indicated strongly correlated and anti-correlated regions, potentially linked to ligand binding.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11047-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11047-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的生成对抗网络(GAN)框架最近被开发出来,以加快药物发现过程。这些模型从零开始生成新分子,并通过分子对接模拟验证它们,以确定给定药物靶标的最有希望的候选分子。本研究选择SARS-CoV-2主要蛋白酶(Mpro)作为药物靶点。两种不同的GAN算法被用来生成新的小分子。一种方法利用配体的实验电子密度(ED-based)数据进行训练,生成类药物分子,而第二种方法利用目标结合袋来捕获结合袋内原子之间的空间和键合关系。基于ed的方法产生了大约26000个分子,而基于结合口袋的方法产生了大约100个分子。这些生成的分子随后根据滑动XP评分(灵活和刚性对接)和AutoDock Vina的分子对接结果进行排名。为了确定最有效的gan衍生分子,还对Mpro共结晶抑制剂分子进行了分子对接。通过分子动力学模拟,进一步评估了这些GAN方法中六个最有希望的分子的稳定性、相互作用和MM-GBSA结合自由能。该分析鉴定出了四种有效的Mpro抑制剂分子,它们都具有2-苄基-6-溴酚支架。将这些化合物的结合自由能与其他Mpro抑制剂的结合自由能进行比较,表明我们的化合物比一些广谱蛋白酶抑制剂对Mpro具有更好的亲和力。动态互相关矩阵图显示了强相关和反相关区域,可能与配体结合有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative adversarial network (GAN) model-based design of potent SARS-CoV-2 Mpro inhibitors using the electron density of ligands and 3D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis.

Deep learning-based generative adversarial network (GAN) frameworks have recently been developed to expedite the drug discovery process. These models generate novel molecules from scratch and validate them through molecular docking simulation to identify the most promising candidates for a given drug target. In this study, the SARS-CoV-2 main protease (Mpro) was selected as the drug target. Two distinct GAN algorithms were employed to generate novel small molecules. One approach utilized experimental electron density (ED-based) data of ligands for training to generate drug-like molecules, while the second approach leveraged the target binding pocket to capture spatial and bonding relationship between atoms within the binding pockets. The ED-based approach generated approximately 26,000 molecules, whereas the binding pocket-based method produced around 100 molecules. These generated molecules were subsequently ranked based on molecular docking results using the glide XP score (both flexible and rigid docking) and AutoDock Vina. To identify the most potent GAN-derived molecules, molecular docking was also performed on co-crystallized inhibitor molecules of Mpro. The six most promising molecules from these GAN approaches were further evaluated for stability, interactions, and MM-GBSA binding free energy through molecular dynamics simulations. This analysis led to the identification of four potent Mpro inhibitor molecules, all featuring a 2-benzyl-6-bromophenol scaffold. The binding free energies of these compounds were compared with those of other Mpro inhibitors, revealing that our compounds demonstrated better affinity for Mpro than some broad-spectrum protease inhibitors. The dynamic cross-correlation matrix plot indicated strongly correlated and anti-correlated regions, potentially linked to ligand binding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments. Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis. Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery. Synthesis and biological evaluation of rationally designed pyrazoles as insecticidal agents. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1