一种手持式HIV检测平台,采用纸质样品制备和实时等温扩增。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-11-29 DOI:10.1038/s41378-024-00822-1
George Adedokun, Gurjit Sidhu, Morteza Alipanah, Gary P Wang, Z Hugh Fan
{"title":"一种手持式HIV检测平台,采用纸质样品制备和实时等温扩增。","authors":"George Adedokun, Gurjit Sidhu, Morteza Alipanah, Gary P Wang, Z Hugh Fan","doi":"10.1038/s41378-024-00822-1","DOIUrl":null,"url":null,"abstract":"<p><p>Early and accurate diagnosis of human immunodeficiency virus (HIV) infection is essential for timely initiation of antiretroviral therapy (ART) and prevention of new infections. However, conventional nucleic-acid-based tests for HIV detection require sophisticated laboratory equipment and trained personnel, which are often unavailable at the point-of-care (POC) or unaffordable in resource-limited settings. We report our development of a low-cost, integrated platform for POC testing of HIV. The platform integrates viral nucleic acid extraction on a paper substrate and reverse transcription loop-mediated isothermal amplification (RT-LAMP) in a portable, battery-powered heating device with real-time detection. The platform does not require laboratory infrastructure such as power outlets. The assay showed a detection limit of 30 copies/mL of HIV RNA in 140 μL human serum or 4 copies/reaction using 50 μL human serum, with no cross-reactivity with hepatitis C virus (HCV). We validated the platform using both plasma samples spiked with HIV and clinical samples from HIV-positive individuals, and compared it with standard laboratory assays based on polymerase chain reaction (PCR). These results demonstrate the feasibility of our platform for HIV testing at the POC.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"181"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607462/pdf/","citationCount":"0","resultStr":"{\"title\":\"A handheld HIV detection platform using paper-based sample preparation and real-time isothermal amplification.\",\"authors\":\"George Adedokun, Gurjit Sidhu, Morteza Alipanah, Gary P Wang, Z Hugh Fan\",\"doi\":\"10.1038/s41378-024-00822-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early and accurate diagnosis of human immunodeficiency virus (HIV) infection is essential for timely initiation of antiretroviral therapy (ART) and prevention of new infections. However, conventional nucleic-acid-based tests for HIV detection require sophisticated laboratory equipment and trained personnel, which are often unavailable at the point-of-care (POC) or unaffordable in resource-limited settings. We report our development of a low-cost, integrated platform for POC testing of HIV. The platform integrates viral nucleic acid extraction on a paper substrate and reverse transcription loop-mediated isothermal amplification (RT-LAMP) in a portable, battery-powered heating device with real-time detection. The platform does not require laboratory infrastructure such as power outlets. The assay showed a detection limit of 30 copies/mL of HIV RNA in 140 μL human serum or 4 copies/reaction using 50 μL human serum, with no cross-reactivity with hepatitis C virus (HCV). We validated the platform using both plasma samples spiked with HIV and clinical samples from HIV-positive individuals, and compared it with standard laboratory assays based on polymerase chain reaction (PCR). These results demonstrate the feasibility of our platform for HIV testing at the POC.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"181\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00822-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00822-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

早期和准确诊断人类免疫缺陷病毒(HIV)感染对于及时开始抗逆转录病毒治疗(ART)和预防新感染至关重要。然而,传统的基于核酸的艾滋病毒检测需要先进的实验室设备和训练有素的人员,而这些设备在护理点(POC)往往无法获得,或者在资源有限的环境中负担不起。我们报告我们开发了一种低成本的综合平台,用于艾滋病毒POC检测。该平台将纸质底物上的病毒核酸提取和逆转录环介导的等温扩增(RT-LAMP)集成在便携式电池供电的加热装置中,并具有实时检测功能。该平台不需要实验室基础设施,如电源插座。结果表明,在140 μL人血清中HIV RNA的检出限为30拷贝/mL,在50 μL人血清中检出限为4拷贝/mL,与丙型肝炎病毒(HCV)无交叉反应。我们使用HIV阳性个体的血浆样本和临床样本验证了该平台,并将其与基于聚合酶链反应(PCR)的标准实验室分析进行了比较。这些结果证明了我们的平台在POC进行艾滋病毒检测的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A handheld HIV detection platform using paper-based sample preparation and real-time isothermal amplification.

Early and accurate diagnosis of human immunodeficiency virus (HIV) infection is essential for timely initiation of antiretroviral therapy (ART) and prevention of new infections. However, conventional nucleic-acid-based tests for HIV detection require sophisticated laboratory equipment and trained personnel, which are often unavailable at the point-of-care (POC) or unaffordable in resource-limited settings. We report our development of a low-cost, integrated platform for POC testing of HIV. The platform integrates viral nucleic acid extraction on a paper substrate and reverse transcription loop-mediated isothermal amplification (RT-LAMP) in a portable, battery-powered heating device with real-time detection. The platform does not require laboratory infrastructure such as power outlets. The assay showed a detection limit of 30 copies/mL of HIV RNA in 140 μL human serum or 4 copies/reaction using 50 μL human serum, with no cross-reactivity with hepatitis C virus (HCV). We validated the platform using both plasma samples spiked with HIV and clinical samples from HIV-positive individuals, and compared it with standard laboratory assays based on polymerase chain reaction (PCR). These results demonstrate the feasibility of our platform for HIV testing at the POC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
A low-cost printed circuit board-based centrifugal microfluidic platform for dielectrophoresis. Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation. Controllable tip exposure of ultramicroelectrodes coated by diamond-like carbon via direct microplasma jet for enhanced stability and fidelity in single-cell recording. Theoretical and experimental investigations of the CMOS compatible Pirani gauges with a temperature compensation model. An intelligent humidity sensing system for human behavior recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1