提高全豆浆馒头品质:超声处理对蛋白质结构及降低豆味的影响

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2024-11-29 DOI:10.1016/j.ultsonch.2024.107156
Feng Han, Jialin Song, Mingming Qi, Yueming Li, Mei Xu, Xin Zhang, Chuangshuo Yan, Shanfeng Chen, Hongjun Li
{"title":"提高全豆浆馒头品质:超声处理对蛋白质结构及降低豆味的影响","authors":"Feng Han,&nbsp;Jialin Song,&nbsp;Mingming Qi,&nbsp;Yueming Li,&nbsp;Mei Xu,&nbsp;Xin Zhang,&nbsp;Chuangshuo Yan,&nbsp;Shanfeng Chen,&nbsp;Hongjun Li","doi":"10.1016/j.ultsonch.2024.107156","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporation of whole soybean pulp (WSP) into wheat flour has been shown to improve the nutritional profile of steamed bread. However, this substitution often disrupts the protein network and introduces an undesirable beany flavor, compromising the overall quality of the steamed bread. This research explored the impacts of varying ultrasonic power levels on the quality of steamed bread containing WSP (WSPSB), with the goal of improving both the protein network structure and the flavor profile. The findings indicated that at an ultrasonic power of 300 W, WSPSB had an 18.10 % decrease in hardness and a 14.93 % increase in specific volume compared to the 0 W. Results from CLSM, SDS-PAGE, fluorescence intensity, surface hydrophobicity, and FTIR spectroscopy revealed that ultrasonic treatment modified the secondary protein structure by increasing the proportion of β-sheets and random coils. These changes facilitated better integration of soybean protein and gluten, thereby strengthening the steamed bread’s protein network. Furthermore, analyses of volatile flavor components, molecular docking, and correlation studies indicated that alterations in the protein structure mitigated the binding of beany flavor components to proteins, leading to significant reductions in their presence—specifically, a 7.12 % decrease in 1-Octen-3-ol and an 8.47 % decrease in Furan, 2-pentyl-. Overall, ultrasound treatment effectively refined the protein network and mitigated the beany flavor in steamed bread, thereby improving its quality.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"Article 107156"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the quality of steamed bread with whole soybean pulp: Effects of ultrasonic treatment on protein structure and reduction of beany flavor\",\"authors\":\"Feng Han,&nbsp;Jialin Song,&nbsp;Mingming Qi,&nbsp;Yueming Li,&nbsp;Mei Xu,&nbsp;Xin Zhang,&nbsp;Chuangshuo Yan,&nbsp;Shanfeng Chen,&nbsp;Hongjun Li\",\"doi\":\"10.1016/j.ultsonch.2024.107156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Incorporation of whole soybean pulp (WSP) into wheat flour has been shown to improve the nutritional profile of steamed bread. However, this substitution often disrupts the protein network and introduces an undesirable beany flavor, compromising the overall quality of the steamed bread. This research explored the impacts of varying ultrasonic power levels on the quality of steamed bread containing WSP (WSPSB), with the goal of improving both the protein network structure and the flavor profile. The findings indicated that at an ultrasonic power of 300 W, WSPSB had an 18.10 % decrease in hardness and a 14.93 % increase in specific volume compared to the 0 W. Results from CLSM, SDS-PAGE, fluorescence intensity, surface hydrophobicity, and FTIR spectroscopy revealed that ultrasonic treatment modified the secondary protein structure by increasing the proportion of β-sheets and random coils. These changes facilitated better integration of soybean protein and gluten, thereby strengthening the steamed bread’s protein network. Furthermore, analyses of volatile flavor components, molecular docking, and correlation studies indicated that alterations in the protein structure mitigated the binding of beany flavor components to proteins, leading to significant reductions in their presence—specifically, a 7.12 % decrease in 1-Octen-3-ol and an 8.47 % decrease in Furan, 2-pentyl-. Overall, ultrasound treatment effectively refined the protein network and mitigated the beany flavor in steamed bread, thereby improving its quality.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"112 \",\"pages\":\"Article 107156\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135041772400405X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772400405X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在小麦粉中加入全豆浆(WSP)已被证明可以改善馒头的营养状况。然而,这种替代往往会破坏蛋白质网络,并引入一种不受欢迎的豆味,从而影响馒头的整体质量。本研究探讨了不同超声功率水平对含WSPSB馒头质量的影响,旨在改善WSPSB馒头的蛋白质网络结构和风味特征。结果表明,在300 W的超声功率下,WSPSB的硬度比0 W降低了18.10%,比容增加了14.93%。CLSM、SDS-PAGE、荧光强度、表面疏水性和FTIR光谱结果表明,超声处理通过增加β-片和随机线圈的比例来修饰二级蛋白结构。这些变化促进了大豆蛋白和面筋的更好整合,从而加强了馒头的蛋白质网络。此外,对挥发性风味成分的分析、分子对接和相关研究表明,蛋白质结构的改变减轻了重味成分与蛋白质的结合,导致它们的存在显著减少,特别是1-辛烯-3-醇减少7.12%,2-戊基-呋喃减少8.47%。总的来说,超声波处理有效地细化了馒头中的蛋白质网络,减轻了馒头中的重味,从而提高了馒头的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the quality of steamed bread with whole soybean pulp: Effects of ultrasonic treatment on protein structure and reduction of beany flavor
Incorporation of whole soybean pulp (WSP) into wheat flour has been shown to improve the nutritional profile of steamed bread. However, this substitution often disrupts the protein network and introduces an undesirable beany flavor, compromising the overall quality of the steamed bread. This research explored the impacts of varying ultrasonic power levels on the quality of steamed bread containing WSP (WSPSB), with the goal of improving both the protein network structure and the flavor profile. The findings indicated that at an ultrasonic power of 300 W, WSPSB had an 18.10 % decrease in hardness and a 14.93 % increase in specific volume compared to the 0 W. Results from CLSM, SDS-PAGE, fluorescence intensity, surface hydrophobicity, and FTIR spectroscopy revealed that ultrasonic treatment modified the secondary protein structure by increasing the proportion of β-sheets and random coils. These changes facilitated better integration of soybean protein and gluten, thereby strengthening the steamed bread’s protein network. Furthermore, analyses of volatile flavor components, molecular docking, and correlation studies indicated that alterations in the protein structure mitigated the binding of beany flavor components to proteins, leading to significant reductions in their presence—specifically, a 7.12 % decrease in 1-Octen-3-ol and an 8.47 % decrease in Furan, 2-pentyl-. Overall, ultrasound treatment effectively refined the protein network and mitigated the beany flavor in steamed bread, thereby improving its quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. Innovative strategy for full-scale polar components explicition and ultrasonic-assisted optimization of Astragalus membranaceus flower. Utilizing ultrasound for the extraction of polysaccharides from the tuber of Typhonium giganteum Engl.: Extraction conditions, structural characterization and bioactivities. Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography. Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1