Qihui Zhu;Shenwen Chen;Tong Guo;Yisheng Lv;Wenbo Du
{"title":"基于自校正因果推理的航班延误时空预测方法","authors":"Qihui Zhu;Shenwen Chen;Tong Guo;Yisheng Lv;Wenbo Du","doi":"10.1109/TITS.2024.3443261","DOIUrl":null,"url":null,"abstract":"Accurate flight delay prediction is crucial for the secure and effective operation of the air traffic system. Recent advances in modeling inter-airport relationships present a promising approach for investigating flight delay prediction from the multi-airport scenario. However, the previous prediction works only accounted for the simplistic relationships such as traffic flow or geographical distance, overlooking the intricate interactions among airports and thus proving inadequate. In this paper, we leverage casual inference to precisely model inter-airport relationships and propose a self-corrective spatio-temporal graph neural network (named CausalNet) for flight delay prediction. Specifically, Granger causality inference coupled with a self-correction module is designed to construct causality graphs among airports and dynamically modify them based on the current airport’s delays. Additionally, the features of the causality graphs are adaptively extracted and utilized to address the heterogeneity of airports. Extensive experiments are conducted on the real data of top-74 busiest airports in China. The results show that CausalNet is superior to baselines. Ablation studies emphasize the power of the proposed self-correction causality graph and the graph feature extraction module. All of these prove the effectiveness of the proposed methodology.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 12","pages":"20820-20831"},"PeriodicalIF":7.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatio-Temporal Approach With Self-Corrective Causal Inference for Flight Delay Prediction\",\"authors\":\"Qihui Zhu;Shenwen Chen;Tong Guo;Yisheng Lv;Wenbo Du\",\"doi\":\"10.1109/TITS.2024.3443261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate flight delay prediction is crucial for the secure and effective operation of the air traffic system. Recent advances in modeling inter-airport relationships present a promising approach for investigating flight delay prediction from the multi-airport scenario. However, the previous prediction works only accounted for the simplistic relationships such as traffic flow or geographical distance, overlooking the intricate interactions among airports and thus proving inadequate. In this paper, we leverage casual inference to precisely model inter-airport relationships and propose a self-corrective spatio-temporal graph neural network (named CausalNet) for flight delay prediction. Specifically, Granger causality inference coupled with a self-correction module is designed to construct causality graphs among airports and dynamically modify them based on the current airport’s delays. Additionally, the features of the causality graphs are adaptively extracted and utilized to address the heterogeneity of airports. Extensive experiments are conducted on the real data of top-74 busiest airports in China. The results show that CausalNet is superior to baselines. Ablation studies emphasize the power of the proposed self-correction causality graph and the graph feature extraction module. All of these prove the effectiveness of the proposed methodology.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 12\",\"pages\":\"20820-20831\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740964/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10740964/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A Spatio-Temporal Approach With Self-Corrective Causal Inference for Flight Delay Prediction
Accurate flight delay prediction is crucial for the secure and effective operation of the air traffic system. Recent advances in modeling inter-airport relationships present a promising approach for investigating flight delay prediction from the multi-airport scenario. However, the previous prediction works only accounted for the simplistic relationships such as traffic flow or geographical distance, overlooking the intricate interactions among airports and thus proving inadequate. In this paper, we leverage casual inference to precisely model inter-airport relationships and propose a self-corrective spatio-temporal graph neural network (named CausalNet) for flight delay prediction. Specifically, Granger causality inference coupled with a self-correction module is designed to construct causality graphs among airports and dynamically modify them based on the current airport’s delays. Additionally, the features of the causality graphs are adaptively extracted and utilized to address the heterogeneity of airports. Extensive experiments are conducted on the real data of top-74 busiest airports in China. The results show that CausalNet is superior to baselines. Ablation studies emphasize the power of the proposed self-correction causality graph and the graph feature extraction module. All of these prove the effectiveness of the proposed methodology.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.