二氧化硅纳米颗粒通过调节番茄根系内生菌群落结构增强植物抗病性

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2024-12-02 DOI:10.1039/D4EN00511B
Lei Wang, Taowen Pan, Sicong Li, Yi Wang, Jason C. White, Baoshan Xing and Kunzheng Cai
{"title":"二氧化硅纳米颗粒通过调节番茄根系内生菌群落结构增强植物抗病性","authors":"Lei Wang, Taowen Pan, Sicong Li, Yi Wang, Jason C. White, Baoshan Xing and Kunzheng Cai","doi":"10.1039/D4EN00511B","DOIUrl":null,"url":null,"abstract":"<p >Nanoparticles have attracted widespread attention for their positive role in suppressing plant diseases. In the present work, the impact of solid silica nanoparticles (SNPs) on the bacterial community of tomato root endophytes under <em>Ralstonia solanacearum</em> (Rs) infection was investigated. Tomato infection by Rs led to a 17.78% reduction in shoot fresh weight and a 66.44% reduction in root fresh weight. Repeated three soil applications of 650 mg L<small><sup>−1</sup></small> SNPs significantly suppressed bacterial wilt, with a 40.27–48.96% reduction in the disease index. SNPs also significantly increased the shoot fresh and dry weight by 17.43% and 17.13%, respectively. In the roots, SNPs altered the structure and increased the diversity of the endophytic bacterial community in infected plants. Notably, <em>Mitsuaria</em>, <em>Sphingobium</em>, <em>Streptococcus</em>, and <em>Rhizobium</em> were enriched with SNPs–Rs treatment; these are identified as beneficial bacteria that facilitate plant resistance to pathogens. Additionally, SNPs' application significantly increased the concentrations of N (27.01%), K (8.34%), and Si (11.01%) in roots under Rs infection. A correlation analysis indicated that nutrient concentration in roots was positively correlated with bacterial community diversity. These data show that SNPs can enhance plant resistance to disease by regulating the structure and diversity of root endophyte communities and improving plant nutrition. Our findings have important implications for the application of nanoparticles in sustainable nano-enabled agriculture.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 2","pages":" 1401-1413"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica nanoparticles enhance plant disease resistance by modulating the endophyte community structure in tomato (Solanum lycopersicum L.) roots†\",\"authors\":\"Lei Wang, Taowen Pan, Sicong Li, Yi Wang, Jason C. White, Baoshan Xing and Kunzheng Cai\",\"doi\":\"10.1039/D4EN00511B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoparticles have attracted widespread attention for their positive role in suppressing plant diseases. In the present work, the impact of solid silica nanoparticles (SNPs) on the bacterial community of tomato root endophytes under <em>Ralstonia solanacearum</em> (Rs) infection was investigated. Tomato infection by Rs led to a 17.78% reduction in shoot fresh weight and a 66.44% reduction in root fresh weight. Repeated three soil applications of 650 mg L<small><sup>−1</sup></small> SNPs significantly suppressed bacterial wilt, with a 40.27–48.96% reduction in the disease index. SNPs also significantly increased the shoot fresh and dry weight by 17.43% and 17.13%, respectively. In the roots, SNPs altered the structure and increased the diversity of the endophytic bacterial community in infected plants. Notably, <em>Mitsuaria</em>, <em>Sphingobium</em>, <em>Streptococcus</em>, and <em>Rhizobium</em> were enriched with SNPs–Rs treatment; these are identified as beneficial bacteria that facilitate plant resistance to pathogens. Additionally, SNPs' application significantly increased the concentrations of N (27.01%), K (8.34%), and Si (11.01%) in roots under Rs infection. A correlation analysis indicated that nutrient concentration in roots was positively correlated with bacterial community diversity. These data show that SNPs can enhance plant resistance to disease by regulating the structure and diversity of root endophyte communities and improving plant nutrition. Our findings have important implications for the application of nanoparticles in sustainable nano-enabled agriculture.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\" 2\",\"pages\":\" 1401-1413\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/en/d4en00511b\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/en/d4en00511b","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒因其在植物病害防治中的积极作用而受到广泛关注。研究了纳米二氧化硅(SNPs)对番茄根系内生菌群落的影响。经Rs侵染后,番茄地上部鲜重减少17.78%,根鲜重减少66.44%。重复施用3次650 mg·L−1 snp对青枯病有显著抑制作用,病害指数降低40.27% ~ 48.96%。单核苷酸多态性显著提高了地上部鲜重和干重,分别提高了17.43%和17.13%。在根系中,snp改变了感染植物的内生细菌群落结构,增加了其多样性。值得注意的是,SNPs-Rs处理后,Mitsuaria、Sphingobium、Streptococcus和Rhizobium富集;这些被认为是促进植物抵抗病原体的有益细菌。此外,SNPs处理显著提高了Rs侵染下根系N(27.01%)、K(8.34%)和Si(11.01%)含量。相关分析表明,根营养元素含量与细菌群落多样性呈正相关。这些数据表明,snp可以通过调节根内生菌群落的结构和多样性来增强植物的抗病性,这可能是通过改善植物营养来介导的。我们的发现对纳米颗粒在可持续纳米农业中的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silica nanoparticles enhance plant disease resistance by modulating the endophyte community structure in tomato (Solanum lycopersicum L.) roots†

Nanoparticles have attracted widespread attention for their positive role in suppressing plant diseases. In the present work, the impact of solid silica nanoparticles (SNPs) on the bacterial community of tomato root endophytes under Ralstonia solanacearum (Rs) infection was investigated. Tomato infection by Rs led to a 17.78% reduction in shoot fresh weight and a 66.44% reduction in root fresh weight. Repeated three soil applications of 650 mg L−1 SNPs significantly suppressed bacterial wilt, with a 40.27–48.96% reduction in the disease index. SNPs also significantly increased the shoot fresh and dry weight by 17.43% and 17.13%, respectively. In the roots, SNPs altered the structure and increased the diversity of the endophytic bacterial community in infected plants. Notably, Mitsuaria, Sphingobium, Streptococcus, and Rhizobium were enriched with SNPs–Rs treatment; these are identified as beneficial bacteria that facilitate plant resistance to pathogens. Additionally, SNPs' application significantly increased the concentrations of N (27.01%), K (8.34%), and Si (11.01%) in roots under Rs infection. A correlation analysis indicated that nutrient concentration in roots was positively correlated with bacterial community diversity. These data show that SNPs can enhance plant resistance to disease by regulating the structure and diversity of root endophyte communities and improving plant nutrition. Our findings have important implications for the application of nanoparticles in sustainable nano-enabled agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa Cr(III)-incorporated Fe(III) hydroxides for enhanced redox conversion of As(III) and Cr(VI) in acidic solution Correction: Emerging investigator series: quantitative insights into the relationship between the concentrations and SERS intensities of neonicotinoids in water Recovery of Co(II), Ni(II) and Zn(II) using magnetic nanoparticles (MNPs) at circumneutral pH Chemical heterogeneity observed in the development of photo-oxidized PET micro- and nanoparticle weathered controls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1