采用点阵工程增韧策略,智能设计a2zr2o7型高熵氧化物

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-12-02 DOI:10.1038/s41524-024-01462-9
Ying Zhang, Ke Ren, William Yi Wang, Xingyu Gao, Jun Wang, Yiguang Wang, Haifeng Song, Xiubing Liang, Jinshan Li
{"title":"采用点阵工程增韧策略,智能设计a2zr2o7型高熵氧化物","authors":"Ying Zhang, Ke Ren, William Yi Wang, Xingyu Gao, Jun Wang, Yiguang Wang, Haifeng Song, Xiubing Liang, Jinshan Li","doi":"10.1038/s41524-024-01462-9","DOIUrl":null,"url":null,"abstract":"<p>The fracture toughness (K<sub>IC</sub>) of high-entropy oxides (HEOs) is critically important for several applications, but identification and quantification of the toughening mechanisms resulting from lattice-engineering/distortion in HEOs is challenging. Here, based on the classic Griffith criteria, a physics-driven theoretical equation combined with a knowledge-enabled data-driven machine-learning algorithm is proposed to predict the K<sub>IC</sub> and elucidate the toughening mechanisms of A<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-type HEOs. Together with experimental verification, our proposed model is applied to a dataset comprising 41208 (nRE<sub>1/n</sub>)<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (<i>n</i> = 2~7) HEOs, considering the contributions of the intrinsic brittleness and increased toughness due to the local lattice distortion (LLD), thereby addressing the challenge of accurate estimating K<sub>IC</sub> in complex HEOs using the rule of mixtures. During crack tip propagation, the interaction mechanism of cations induces stress fields and charge variations of LLD and dissipates crack energy, thus, to yield the crack tip softening and the elastic shielding and to enhance the toughness of HEOs.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"26 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart design A2Zr2O7-type high-entropy oxides through lattice-engineering toughening strategy\",\"authors\":\"Ying Zhang, Ke Ren, William Yi Wang, Xingyu Gao, Jun Wang, Yiguang Wang, Haifeng Song, Xiubing Liang, Jinshan Li\",\"doi\":\"10.1038/s41524-024-01462-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fracture toughness (K<sub>IC</sub>) of high-entropy oxides (HEOs) is critically important for several applications, but identification and quantification of the toughening mechanisms resulting from lattice-engineering/distortion in HEOs is challenging. Here, based on the classic Griffith criteria, a physics-driven theoretical equation combined with a knowledge-enabled data-driven machine-learning algorithm is proposed to predict the K<sub>IC</sub> and elucidate the toughening mechanisms of A<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-type HEOs. Together with experimental verification, our proposed model is applied to a dataset comprising 41208 (nRE<sub>1/n</sub>)<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (<i>n</i> = 2~7) HEOs, considering the contributions of the intrinsic brittleness and increased toughness due to the local lattice distortion (LLD), thereby addressing the challenge of accurate estimating K<sub>IC</sub> in complex HEOs using the rule of mixtures. During crack tip propagation, the interaction mechanism of cations induces stress fields and charge variations of LLD and dissipates crack energy, thus, to yield the crack tip softening and the elastic shielding and to enhance the toughness of HEOs.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01462-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01462-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵氧化物(HEOs)的断裂韧性(KIC)在许多应用中都是至关重要的,但在HEOs中由晶格工程/变形引起的增韧机制的识别和量化是具有挑战性的。本文基于经典的Griffith准则,提出了一个物理驱动的理论方程,结合知识驱动的数据驱动的机器学习算法来预测KIC并阐明a2zr2o7型heo的增韧机制。结合实验验证,我们提出的模型应用于包含41208 (nRE1/n)2Zr2O7 (n = 2~7) HEOs的数据集,考虑了由于局部晶格畸变(LLD)导致的固有脆性和韧性增加的贡献,从而解决了使用混合规则准确估计复杂HEOs的KIC的挑战。在裂纹尖端扩展过程中,阳离子的相互作用机制诱发LLD的应力场和电荷变化,耗散裂纹能量,从而产生裂纹尖端软化和弹性屏蔽,增强HEOs的韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart design A2Zr2O7-type high-entropy oxides through lattice-engineering toughening strategy

The fracture toughness (KIC) of high-entropy oxides (HEOs) is critically important for several applications, but identification and quantification of the toughening mechanisms resulting from lattice-engineering/distortion in HEOs is challenging. Here, based on the classic Griffith criteria, a physics-driven theoretical equation combined with a knowledge-enabled data-driven machine-learning algorithm is proposed to predict the KIC and elucidate the toughening mechanisms of A2Zr2O7-type HEOs. Together with experimental verification, our proposed model is applied to a dataset comprising 41208 (nRE1/n)2Zr2O7 (n = 2~7) HEOs, considering the contributions of the intrinsic brittleness and increased toughness due to the local lattice distortion (LLD), thereby addressing the challenge of accurate estimating KIC in complex HEOs using the rule of mixtures. During crack tip propagation, the interaction mechanism of cations induces stress fields and charge variations of LLD and dissipates crack energy, thus, to yield the crack tip softening and the elastic shielding and to enhance the toughness of HEOs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
SPACIER: on-demand polymer design with fully automated all-atom classical molecular dynamics integrated into machine learning pipelines Exploring parameter dependence of atomic minima with implicit differentiation Active oversight and quality control in standard Bayesian optimization for autonomous experiments Feature engineering descriptors, transforms, and machine learning for grain boundaries and variable-sized atom clusters Machine learning Hubbard parameters with equivariant neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1