共平面感知GAN的无监督全局和局部单应估计

Shuaicheng Liu;Mingbo Hong;Yuhang Lu;Nianjin Ye;Chunyu Lin;Bing Zeng
{"title":"共平面感知GAN的无监督全局和局部单应估计","authors":"Shuaicheng Liu;Mingbo Hong;Yuhang Lu;Nianjin Ye;Chunyu Lin;Bing Zeng","doi":"10.1109/TPAMI.2024.3509614","DOIUrl":null,"url":null,"abstract":"Unsupervised methods have received increasing attention in homography learning due to their promising performance and label-free training. However, existing methods do not explicitly consider the plane-induced parallax, making the prediction compromised on multiple planes. In this work, we propose a novel method HomoGAN to guide unsupervised homography estimation to focus on the dominant plane. First, a multi-scale transformer is designed to predict homography from the feature pyramids of input images in a coarse-to-fine fashion. Moreover, we propose an unsupervised GAN to impose coplanarity constraint on the predicted homography, which is realized by using a generator to predict a mask of aligned regions, and then a discriminator to check if two masked feature maps are induced by a single homography. Based on the global homography framework, we extend it to the local mesh-grid homography estimation, namely, MeshHomoGAN, where plane constraints can be enforced on each mesh cell to go beyond a single dominant plane, such that scenes with multiple depth planes can be better aligned. To validate the effectiveness of our method and its components, we conduct extensive experiments on large-scale datasets. Results show that our matching error is 22% lower than previous SOTA methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"1863-1876"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Global and Local Homography Estimation With Coplanarity-Aware GAN\",\"authors\":\"Shuaicheng Liu;Mingbo Hong;Yuhang Lu;Nianjin Ye;Chunyu Lin;Bing Zeng\",\"doi\":\"10.1109/TPAMI.2024.3509614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised methods have received increasing attention in homography learning due to their promising performance and label-free training. However, existing methods do not explicitly consider the plane-induced parallax, making the prediction compromised on multiple planes. In this work, we propose a novel method HomoGAN to guide unsupervised homography estimation to focus on the dominant plane. First, a multi-scale transformer is designed to predict homography from the feature pyramids of input images in a coarse-to-fine fashion. Moreover, we propose an unsupervised GAN to impose coplanarity constraint on the predicted homography, which is realized by using a generator to predict a mask of aligned regions, and then a discriminator to check if two masked feature maps are induced by a single homography. Based on the global homography framework, we extend it to the local mesh-grid homography estimation, namely, MeshHomoGAN, where plane constraints can be enforced on each mesh cell to go beyond a single dominant plane, such that scenes with multiple depth planes can be better aligned. To validate the effectiveness of our method and its components, we conduct extensive experiments on large-scale datasets. Results show that our matching error is 22% lower than previous SOTA methods.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 3\",\"pages\":\"1863-1876\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772056/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772056/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Global and Local Homography Estimation With Coplanarity-Aware GAN
Unsupervised methods have received increasing attention in homography learning due to their promising performance and label-free training. However, existing methods do not explicitly consider the plane-induced parallax, making the prediction compromised on multiple planes. In this work, we propose a novel method HomoGAN to guide unsupervised homography estimation to focus on the dominant plane. First, a multi-scale transformer is designed to predict homography from the feature pyramids of input images in a coarse-to-fine fashion. Moreover, we propose an unsupervised GAN to impose coplanarity constraint on the predicted homography, which is realized by using a generator to predict a mask of aligned regions, and then a discriminator to check if two masked feature maps are induced by a single homography. Based on the global homography framework, we extend it to the local mesh-grid homography estimation, namely, MeshHomoGAN, where plane constraints can be enforced on each mesh cell to go beyond a single dominant plane, such that scenes with multiple depth planes can be better aligned. To validate the effectiveness of our method and its components, we conduct extensive experiments on large-scale datasets. Results show that our matching error is 22% lower than previous SOTA methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1