{"title":"下洗效应及其在爆炸致创伤性脑损伤中的作用的数值与实验研究","authors":"S. S. Santhanam, P. Alagappan","doi":"10.1007/s00193-024-01183-4","DOIUrl":null,"url":null,"abstract":"<div><p>The blast wave interactions with the helmet–head assembly can result in localized pressure amplification at certain locations around the head. The underwash effect is a typical example of such interaction in the gap between the suspension-type combat helmet and the head. There are hypotheses in the literature that suspect an increase in the severity of blast-induced traumatic brain injury due to combat helmet usage under blast loading. But the literature lacks concrete experimental visual evidence for the underwash effect and the cause–effect relationship between the underwash effect and brain injury. Firstly, in this study, shock wave interactions causing the underwash effect are visualized using the schlieren imaging technique. Secondly, a reasonable correlation between a significantly large, localized pressure amplification due to the underwash effect and the brain’s mechanical stress response was observed with an idealized helmet–head model in a coupled Eulerian–Lagrangian framework. But further studies are needed with more realistic models to prove their significance in the design of blast-resistant combat helmets.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 6","pages":"609 - 624"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental study of underwash effect and its role in blast-induced traumatic brain injury\",\"authors\":\"S. S. Santhanam, P. Alagappan\",\"doi\":\"10.1007/s00193-024-01183-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The blast wave interactions with the helmet–head assembly can result in localized pressure amplification at certain locations around the head. The underwash effect is a typical example of such interaction in the gap between the suspension-type combat helmet and the head. There are hypotheses in the literature that suspect an increase in the severity of blast-induced traumatic brain injury due to combat helmet usage under blast loading. But the literature lacks concrete experimental visual evidence for the underwash effect and the cause–effect relationship between the underwash effect and brain injury. Firstly, in this study, shock wave interactions causing the underwash effect are visualized using the schlieren imaging technique. Secondly, a reasonable correlation between a significantly large, localized pressure amplification due to the underwash effect and the brain’s mechanical stress response was observed with an idealized helmet–head model in a coupled Eulerian–Lagrangian framework. But further studies are needed with more realistic models to prove their significance in the design of blast-resistant combat helmets.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"34 6\",\"pages\":\"609 - 624\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-024-01183-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01183-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical and experimental study of underwash effect and its role in blast-induced traumatic brain injury
The blast wave interactions with the helmet–head assembly can result in localized pressure amplification at certain locations around the head. The underwash effect is a typical example of such interaction in the gap between the suspension-type combat helmet and the head. There are hypotheses in the literature that suspect an increase in the severity of blast-induced traumatic brain injury due to combat helmet usage under blast loading. But the literature lacks concrete experimental visual evidence for the underwash effect and the cause–effect relationship between the underwash effect and brain injury. Firstly, in this study, shock wave interactions causing the underwash effect are visualized using the schlieren imaging technique. Secondly, a reasonable correlation between a significantly large, localized pressure amplification due to the underwash effect and the brain’s mechanical stress response was observed with an idealized helmet–head model in a coupled Eulerian–Lagrangian framework. But further studies are needed with more realistic models to prove their significance in the design of blast-resistant combat helmets.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.