采用细网格有限元-光滑颗粒流体力学自适应方法对金属剥落过程进行宏观和细观同步数值模拟

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-11-06 DOI:10.1007/s00193-024-01195-0
J. T. Ma, Q. G. He, X. W. Chen
{"title":"采用细网格有限元-光滑颗粒流体力学自适应方法对金属剥落过程进行宏观和细观同步数值模拟","authors":"J. T. Ma,&nbsp;Q. G. He,&nbsp;X. W. Chen","doi":"10.1007/s00193-024-01195-0","DOIUrl":null,"url":null,"abstract":"<div><p>It is extremely important to predict the growth, aggregation, and coalescence failure of voids during the dynamic tensile fracture of ductile metals. In the present work, we used the finite element—smoothed particle hydrodynamics (FE-SPH) adaptive method to simulate the plate impact of tantalum simultaneously from macro- and meso-scales. For macro simulation results, the spallation phenomena and free-surface velocity were in good agreement with the experimental results, verifying the correctness of the simulation method and material model. Moreover, the free surface velocity profiles simulated by the FE-SPH adaptive method is closer to the experiment than those by the finite element method. According to the magnified details of the damage, we envisaged that the deleted elements are converted to SPH particles to represent the formation of voids. By comparing the porosity, we demonstrated the rationality of this envisagement and determined the fine mesh size to simulate growth, aggregation, and coalescence of actual meso-voids. On this basis, we proposed a void-position tracking method to accurately track the temporal and spatial information of voids. Such information would provide a detailed range of damage and describe the features and macro factors affecting void evolution. In general, the fine mesh FE-SPH method can well predict the damage distribution of spallation simultaneously in macro- and meso-scales, and this simple method has important applications.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 6","pages":"569 - 589"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method\",\"authors\":\"J. T. Ma,&nbsp;Q. G. He,&nbsp;X. W. Chen\",\"doi\":\"10.1007/s00193-024-01195-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is extremely important to predict the growth, aggregation, and coalescence failure of voids during the dynamic tensile fracture of ductile metals. In the present work, we used the finite element—smoothed particle hydrodynamics (FE-SPH) adaptive method to simulate the plate impact of tantalum simultaneously from macro- and meso-scales. For macro simulation results, the spallation phenomena and free-surface velocity were in good agreement with the experimental results, verifying the correctness of the simulation method and material model. Moreover, the free surface velocity profiles simulated by the FE-SPH adaptive method is closer to the experiment than those by the finite element method. According to the magnified details of the damage, we envisaged that the deleted elements are converted to SPH particles to represent the formation of voids. By comparing the porosity, we demonstrated the rationality of this envisagement and determined the fine mesh size to simulate growth, aggregation, and coalescence of actual meso-voids. On this basis, we proposed a void-position tracking method to accurately track the temporal and spatial information of voids. Such information would provide a detailed range of damage and describe the features and macro factors affecting void evolution. In general, the fine mesh FE-SPH method can well predict the damage distribution of spallation simultaneously in macro- and meso-scales, and this simple method has important applications.\\n</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"34 6\",\"pages\":\"569 - 589\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-024-01195-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01195-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

预测塑性金属动态拉伸断裂过程中孔洞的生长、聚集和聚结破坏具有十分重要的意义。本文采用有限元-光滑粒子流体力学(FE-SPH)自适应方法,从宏观和中观尺度同时模拟了钽对平板的冲击。宏观模拟结果表明,散裂现象和自由面速度与实验结果吻合较好,验证了模拟方法和材料模型的正确性。此外,FE-SPH自适应方法模拟的自由表面速度分布比有限元法更接近实验结果。根据损伤的放大细节,我们设想被删除的元素转化为SPH粒子来代表空洞的形成。通过比较孔隙率,我们证明了这种设想的合理性,并确定了模拟实际中孔生长、聚集和聚并的细孔尺寸。在此基础上,提出了一种能够准确跟踪空洞时空信息的空洞位置跟踪方法。这些信息将提供详细的损伤范围,并描述影响空洞演化的特征和宏观因素。总的来说,细网格FE-SPH方法可以很好地同时预测宏观和细观尺度上的裂裂损伤分布,这种简单的方法具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method

It is extremely important to predict the growth, aggregation, and coalescence failure of voids during the dynamic tensile fracture of ductile metals. In the present work, we used the finite element—smoothed particle hydrodynamics (FE-SPH) adaptive method to simulate the plate impact of tantalum simultaneously from macro- and meso-scales. For macro simulation results, the spallation phenomena and free-surface velocity were in good agreement with the experimental results, verifying the correctness of the simulation method and material model. Moreover, the free surface velocity profiles simulated by the FE-SPH adaptive method is closer to the experiment than those by the finite element method. According to the magnified details of the damage, we envisaged that the deleted elements are converted to SPH particles to represent the formation of voids. By comparing the porosity, we demonstrated the rationality of this envisagement and determined the fine mesh size to simulate growth, aggregation, and coalescence of actual meso-voids. On this basis, we proposed a void-position tracking method to accurately track the temporal and spatial information of voids. Such information would provide a detailed range of damage and describe the features and macro factors affecting void evolution. In general, the fine mesh FE-SPH method can well predict the damage distribution of spallation simultaneously in macro- and meso-scales, and this simple method has important applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
Investigation of flow characteristics of various-aspect-ratio rectangular nozzles with an aft deck Normal shock wave coherence relative to other flow events with high and low levels of inlet Mach wave unsteadiness Numerical and experimental study of underwash effect and its role in blast-induced traumatic brain injury The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method Higher-order moments of the Mott-Smith shock approximation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1