aie荧光TPENC12纳米脂质体:光学性质的构建和表征

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2024-12-03 DOI:10.1007/s10876-024-02731-9
Hongye Liao, Xun Yang, Xinyu Shi, Jianv Wang, Tong Xia, Simei Yang, Qingqing He, Xia Xiong, Li Liu, Changzhen Sun
{"title":"aie荧光TPENC12纳米脂质体:光学性质的构建和表征","authors":"Hongye Liao,&nbsp;Xun Yang,&nbsp;Xinyu Shi,&nbsp;Jianv Wang,&nbsp;Tong Xia,&nbsp;Simei Yang,&nbsp;Qingqing He,&nbsp;Xia Xiong,&nbsp;Li Liu,&nbsp;Changzhen Sun","doi":"10.1007/s10876-024-02731-9","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of optical imaging technology has greatly facilitated the research on fluorescent probes with tumor imaging capabilities. Tetraphenylethlene (TPE) is a well-known molecule with aggregation-induced emission (AIE) properties. Accordingly, its derivatives have been widely used for fluorescence imaging of tumors. In the present study, we designed and synthesized five AIE molecules that contained TPE and had varying alkyl chain lengths. The fluorescent molecules were found to adhere to the two rules of spectroscopy in both favorable and unfavorable solvents. Furthermore, all molecules were able to form aggregates in the DCM/n-hexane mixture, demonstrating the AIE effect. Among them, TPENC12 possessed the most appropriate alkyl chain length. Following the five molecules successful integration into nanoliposomes. The nanoliposomes were screened, to obtain the TPENC12 nanoliposome that exhibited the highest fluorescence intensity. TPENC12 nanoliposome were capable of being taken up by melanoma cells, thus, effectively enabling tumor imaging. Moreover, they demonstrated a significant anti-tumor effect against melanoma at low concentrations, while exhibiting minimal toxicity towards normal cells. The present study, thus, offers valuable insights into the molecular structure design of AIE-based TPE derivatives for fluorescent imaging, thereby highlighting their potential for use in tumor imaging, as well as in the treatment of melanoma.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIE-Fluorescent TPENC12 Nanoliposome: Construction and Characterization of Optical Properties\",\"authors\":\"Hongye Liao,&nbsp;Xun Yang,&nbsp;Xinyu Shi,&nbsp;Jianv Wang,&nbsp;Tong Xia,&nbsp;Simei Yang,&nbsp;Qingqing He,&nbsp;Xia Xiong,&nbsp;Li Liu,&nbsp;Changzhen Sun\",\"doi\":\"10.1007/s10876-024-02731-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advancement of optical imaging technology has greatly facilitated the research on fluorescent probes with tumor imaging capabilities. Tetraphenylethlene (TPE) is a well-known molecule with aggregation-induced emission (AIE) properties. Accordingly, its derivatives have been widely used for fluorescence imaging of tumors. In the present study, we designed and synthesized five AIE molecules that contained TPE and had varying alkyl chain lengths. The fluorescent molecules were found to adhere to the two rules of spectroscopy in both favorable and unfavorable solvents. Furthermore, all molecules were able to form aggregates in the DCM/n-hexane mixture, demonstrating the AIE effect. Among them, TPENC12 possessed the most appropriate alkyl chain length. Following the five molecules successful integration into nanoliposomes. The nanoliposomes were screened, to obtain the TPENC12 nanoliposome that exhibited the highest fluorescence intensity. TPENC12 nanoliposome were capable of being taken up by melanoma cells, thus, effectively enabling tumor imaging. Moreover, they demonstrated a significant anti-tumor effect against melanoma at low concentrations, while exhibiting minimal toxicity towards normal cells. The present study, thus, offers valuable insights into the molecular structure design of AIE-based TPE derivatives for fluorescent imaging, thereby highlighting their potential for use in tumor imaging, as well as in the treatment of melanoma.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02731-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02731-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

光学成像技术的进步极大地促进了具有肿瘤成像能力的荧光探针的研究。四苯基乙烯(TPE)是一种众所周知的具有聚集诱导发射(AIE)特性的分子。因此,其衍生物已广泛应用于肿瘤的荧光成像。在本研究中,我们设计并合成了五种含有TPE且烷基链长不同的AIE分子。发现荧光分子在有利和不利的溶剂中都遵守两个光谱规则。此外,所有分子都能在DCM/正己烷混合物中形成聚集体,证明了AIE效应。其中,TPENC12具有最合适的烷基链长。随后这五种分子成功整合到纳米脂质体中。对纳米脂质体进行筛选,得到荧光强度最高的TPENC12纳米脂质体。TPENC12纳米脂质体能够被黑色素瘤细胞吸收,从而有效地实现肿瘤成像。此外,它们在低浓度下对黑色素瘤具有显著的抗肿瘤作用,同时对正常细胞的毒性最小。因此,本研究为荧光成像的基于ai的TPE衍生物的分子结构设计提供了有价值的见解,从而突出了它们在肿瘤成像和黑色素瘤治疗中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIE-Fluorescent TPENC12 Nanoliposome: Construction and Characterization of Optical Properties

The advancement of optical imaging technology has greatly facilitated the research on fluorescent probes with tumor imaging capabilities. Tetraphenylethlene (TPE) is a well-known molecule with aggregation-induced emission (AIE) properties. Accordingly, its derivatives have been widely used for fluorescence imaging of tumors. In the present study, we designed and synthesized five AIE molecules that contained TPE and had varying alkyl chain lengths. The fluorescent molecules were found to adhere to the two rules of spectroscopy in both favorable and unfavorable solvents. Furthermore, all molecules were able to form aggregates in the DCM/n-hexane mixture, demonstrating the AIE effect. Among them, TPENC12 possessed the most appropriate alkyl chain length. Following the five molecules successful integration into nanoliposomes. The nanoliposomes were screened, to obtain the TPENC12 nanoliposome that exhibited the highest fluorescence intensity. TPENC12 nanoliposome were capable of being taken up by melanoma cells, thus, effectively enabling tumor imaging. Moreover, they demonstrated a significant anti-tumor effect against melanoma at low concentrations, while exhibiting minimal toxicity towards normal cells. The present study, thus, offers valuable insights into the molecular structure design of AIE-based TPE derivatives for fluorescent imaging, thereby highlighting their potential for use in tumor imaging, as well as in the treatment of melanoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Synergistic Adsorption-Photocatalysis Under Sunlight Irradiation of NiO/Graphitic Carbon Nitride Nanocomposite for the Removal of Ciprofloxacin from Wastewater Waste to Versatile: Effective Utilization of Waste Aluminium foils for the Synthesis of Cu2O Nanoparticles for Catalytic and Electrochemical Applications New Insights in the Fabrication of Cobalt Chromite (CoCr2O4) Nanoparticles and Their Multifunctional Applications- A Review Synthesis of Zinc Oxide Nanoparticles and Their Potential Application in the Detection of Latent Fingerprints Design and Development of Biotinylated SNEDDS for Improved Efficacy of Curcumin against Hepatocellular Carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1