考虑真实气体效应和膨胀管内湍流边界层的激波衰减数值模拟

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-10-14 DOI:10.1007/s00193-024-01198-x
H. Sakamoto, S. Sato, N. Ohnishi
{"title":"考虑真实气体效应和膨胀管内湍流边界层的激波衰减数值模拟","authors":"H. Sakamoto,&nbsp;S. Sato,&nbsp;N. Ohnishi","doi":"10.1007/s00193-024-01198-x","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of real gas effects and a turbulent boundary layer on shock wave attenuation in the expansion tube is studied by numerically solving the axisymmetric compressible Navier–Stokes equations with an adaptive mesh refinement technique. Numerical simulation results reveal that the ideal gas assumption is not applicable to the expansion tube, and the turbulent boundary layer plays a major role in decreasing the shock wave speed in the acceleration tube of the expansion tube. Shock wave attenuation is attributed to the turbulent boundary layer decreasing the pressure behind the shock wave. The numerical simulations that include the real gas effects and the development of turbulent boundary layers qualitatively agree with analytical solutions in the shock tube, and they show good agreement with the experimental results, especially for the shock speed in the acceleration tube of the expansion tube. Both effects should be considered in the numerical simulation model aimed to support experiments in expansion tubes.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 6","pages":"539 - 553"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01198-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of shock attenuation with real gas effects and a turbulent boundary layer in the expansion tube\",\"authors\":\"H. Sakamoto,&nbsp;S. Sato,&nbsp;N. Ohnishi\",\"doi\":\"10.1007/s00193-024-01198-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of real gas effects and a turbulent boundary layer on shock wave attenuation in the expansion tube is studied by numerically solving the axisymmetric compressible Navier–Stokes equations with an adaptive mesh refinement technique. Numerical simulation results reveal that the ideal gas assumption is not applicable to the expansion tube, and the turbulent boundary layer plays a major role in decreasing the shock wave speed in the acceleration tube of the expansion tube. Shock wave attenuation is attributed to the turbulent boundary layer decreasing the pressure behind the shock wave. The numerical simulations that include the real gas effects and the development of turbulent boundary layers qualitatively agree with analytical solutions in the shock tube, and they show good agreement with the experimental results, especially for the shock speed in the acceleration tube of the expansion tube. Both effects should be considered in the numerical simulation model aimed to support experiments in expansion tubes.\\n</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"34 6\",\"pages\":\"539 - 553\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00193-024-01198-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-024-01198-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01198-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

采用自适应网格细化技术对轴对称可压缩Navier-Stokes方程进行数值求解,研究了实际气体效应和湍流边界层对膨胀管内激波衰减的影响。数值模拟结果表明,理想气体假设不适用于膨胀管,湍流边界层对膨胀管加速管内激波速度的降低起主要作用。激波的衰减是由于湍流边界层降低了激波后的压力。考虑实际气体效应和湍流边界层发展的数值模拟结果与激波管内的解析解定性一致,与实验结果吻合较好,特别是膨胀管加速管内的激波速度。在支持膨胀管实验的数值模拟模型中,应考虑这两种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of shock attenuation with real gas effects and a turbulent boundary layer in the expansion tube

The influence of real gas effects and a turbulent boundary layer on shock wave attenuation in the expansion tube is studied by numerically solving the axisymmetric compressible Navier–Stokes equations with an adaptive mesh refinement technique. Numerical simulation results reveal that the ideal gas assumption is not applicable to the expansion tube, and the turbulent boundary layer plays a major role in decreasing the shock wave speed in the acceleration tube of the expansion tube. Shock wave attenuation is attributed to the turbulent boundary layer decreasing the pressure behind the shock wave. The numerical simulations that include the real gas effects and the development of turbulent boundary layers qualitatively agree with analytical solutions in the shock tube, and they show good agreement with the experimental results, especially for the shock speed in the acceleration tube of the expansion tube. Both effects should be considered in the numerical simulation model aimed to support experiments in expansion tubes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
Investigation of flow characteristics of various-aspect-ratio rectangular nozzles with an aft deck Normal shock wave coherence relative to other flow events with high and low levels of inlet Mach wave unsteadiness Numerical and experimental study of underwash effect and its role in blast-induced traumatic brain injury The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method Higher-order moments of the Mott-Smith shock approximation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1