进化基因组学为野生苹果物种的濒危和保护提供了见解

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-12-04 DOI:10.1111/eva.70048
Jian Zhang, Fang-Yuan Zhao, Hong-Xiang Zhang
{"title":"进化基因组学为野生苹果物种的濒危和保护提供了见解","authors":"Jian Zhang,&nbsp;Fang-Yuan Zhao,&nbsp;Hong-Xiang Zhang","doi":"10.1111/eva.70048","DOIUrl":null,"url":null,"abstract":"<p>Understanding the evolutionary history of a species is essential for effective conservation management. <i>Malus sieversii</i>, a relict broad-leaf forest tree found in arid Central Asian mountains, has a narrow and fragmented distribution and is classified as an endangered species in China. This species is considered one of the ancestors of the domesticated apple trees. In the present study, we sampled five populations of <i>M. sieversii</i> and its wide-ranging congener <i>M. baccata</i> from China. Through deep whole-genome resequencing, we analyzed the population's genetic diversity, genetic structure, demographic history, fixation of deleterious mutations, and genomic divergence. Our results revealed that <i>M. baccata</i> exhibits a higher level of genetic diversity than <i>M. sieversii</i>. The effective population size of <i>M. sieversii</i> decreased, whereas that of <i>M. baccata</i> recovered after the bottleneck effect. In <i>M. sieversii</i>, the genetic structure of the Yili region was distinct from that of the Tacheng region. Populations at the rear edge of the Tacheng region showed a stronger fixation of deleterious mutations than those in the Yili region. Genomic divergence indicated that the positively selected genes were associated with physiological processes within the genomic islands between the Yili and Tacheng regions. Based on these findings, we recommend the establishment of two separate conservation units for the Yili and Tacheng lineages to preserve their genetic resources. Given the limited distribution range and high fixation rate of deleterious mutations, urgent protective measures are recommended for the Tacheng lineage.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70048","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Genomics Provides Insights Into Endangerment and Conservation of a Wild Apple Tree Species, Malus sieversii\",\"authors\":\"Jian Zhang,&nbsp;Fang-Yuan Zhao,&nbsp;Hong-Xiang Zhang\",\"doi\":\"10.1111/eva.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the evolutionary history of a species is essential for effective conservation management. <i>Malus sieversii</i>, a relict broad-leaf forest tree found in arid Central Asian mountains, has a narrow and fragmented distribution and is classified as an endangered species in China. This species is considered one of the ancestors of the domesticated apple trees. In the present study, we sampled five populations of <i>M. sieversii</i> and its wide-ranging congener <i>M. baccata</i> from China. Through deep whole-genome resequencing, we analyzed the population's genetic diversity, genetic structure, demographic history, fixation of deleterious mutations, and genomic divergence. Our results revealed that <i>M. baccata</i> exhibits a higher level of genetic diversity than <i>M. sieversii</i>. The effective population size of <i>M. sieversii</i> decreased, whereas that of <i>M. baccata</i> recovered after the bottleneck effect. In <i>M. sieversii</i>, the genetic structure of the Yili region was distinct from that of the Tacheng region. Populations at the rear edge of the Tacheng region showed a stronger fixation of deleterious mutations than those in the Yili region. Genomic divergence indicated that the positively selected genes were associated with physiological processes within the genomic islands between the Yili and Tacheng regions. Based on these findings, we recommend the establishment of two separate conservation units for the Yili and Tacheng lineages to preserve their genetic resources. Given the limited distribution range and high fixation rate of deleterious mutations, urgent protective measures are recommended for the Tacheng lineage.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"17 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.70048\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70048","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解物种的进化史对于有效的保护管理是必不可少的。海葵(Malus sieversii)是中亚干旱山区的一种阔叶林残树,分布狭窄而破碎,在中国被列为濒危物种。这个物种被认为是驯化苹果树的祖先之一。在本研究中,我们从中国取样了5个种群的M. sieversii及其广泛分布的同族M. baccata。通过深度全基因组重测序,我们分析了种群的遗传多样性、遗传结构、人口统计学历史、有害突变的固定和基因组分化。结果表明,巴卡塔芽孢杆菌的遗传多样性高于西韦氏芽孢杆菌。瓶颈效应后,白僵菌的有效种群数量减少,白僵菌的有效种群数量恢复。伊犁地区与塔城地区有明显的遗传结构差异。塔城地区后缘种群对有害突变的固定作用强于伊犁地区。基因组差异表明,正选择基因与伊犁和塔城地区基因组岛内的生理过程有关。在此基础上,建议对伊犁和塔城两个世系分别建立保护单元,以保护其遗传资源。鉴于塔城系有害突变分布范围有限,固定率高,建议采取紧急保护措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Genomics Provides Insights Into Endangerment and Conservation of a Wild Apple Tree Species, Malus sieversii

Understanding the evolutionary history of a species is essential for effective conservation management. Malus sieversii, a relict broad-leaf forest tree found in arid Central Asian mountains, has a narrow and fragmented distribution and is classified as an endangered species in China. This species is considered one of the ancestors of the domesticated apple trees. In the present study, we sampled five populations of M. sieversii and its wide-ranging congener M. baccata from China. Through deep whole-genome resequencing, we analyzed the population's genetic diversity, genetic structure, demographic history, fixation of deleterious mutations, and genomic divergence. Our results revealed that M. baccata exhibits a higher level of genetic diversity than M. sieversii. The effective population size of M. sieversii decreased, whereas that of M. baccata recovered after the bottleneck effect. In M. sieversii, the genetic structure of the Yili region was distinct from that of the Tacheng region. Populations at the rear edge of the Tacheng region showed a stronger fixation of deleterious mutations than those in the Yili region. Genomic divergence indicated that the positively selected genes were associated with physiological processes within the genomic islands between the Yili and Tacheng regions. Based on these findings, we recommend the establishment of two separate conservation units for the Yili and Tacheng lineages to preserve their genetic resources. Given the limited distribution range and high fixation rate of deleterious mutations, urgent protective measures are recommended for the Tacheng lineage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Issue Information Genetic Architecture Underlying Response to the Fungal Pathogen Dothistroma septosporum in Lodgepole Pine, Jack Pine, and Their Hybrids Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.) Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1