Babar M. Zargar, Mudasir A. Khanday, Farooq A. Khanday
{"title":"基于SG-FET的超低能耗尖峰神经元心电信号分类","authors":"Babar M. Zargar, Mudasir A. Khanday, Farooq A. Khanday","doi":"10.1002/jnm.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents an energy-efficient single-transistor leaky integrate-and-fire neuron, based on Suspended Gate-FET (SG-FET), for signal classification and neuromorphic computing applications. By leveraging the SG-FET model, extensive simulations were conducted to demonstrate the device's remarkable neuronal ability. The device faithfully emulated the intricate behaviour of biological neurons, without the need for external circuitry. One of the standout achievements lies in the device's astonishingly low energy consumption of 94.5 aJ per spike. Therefore, it outperforms the previously proposed one-transistor (1-T) neurons, which makes it a potential candidate for energy-efficient neuromorphic computing. To verify the practical viability of the device, an emulation was seamlessly integrated into a spiking neural network framework, allowing for real-time signal classification. In this specific case, the device excelled in the classification of electrocardiogram (ECG) signals, achieving an impressive accuracy rate of 85.6%. This outcome highlights the device's efficacy in handling real-world signal processing tasks with remarkable precision and efficiency.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SG-FET Based Spiking Neuron With Ultra-Low Energy Consumption for ECG Signal Classification\",\"authors\":\"Babar M. Zargar, Mudasir A. Khanday, Farooq A. Khanday\",\"doi\":\"10.1002/jnm.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper presents an energy-efficient single-transistor leaky integrate-and-fire neuron, based on Suspended Gate-FET (SG-FET), for signal classification and neuromorphic computing applications. By leveraging the SG-FET model, extensive simulations were conducted to demonstrate the device's remarkable neuronal ability. The device faithfully emulated the intricate behaviour of biological neurons, without the need for external circuitry. One of the standout achievements lies in the device's astonishingly low energy consumption of 94.5 aJ per spike. Therefore, it outperforms the previously proposed one-transistor (1-T) neurons, which makes it a potential candidate for energy-efficient neuromorphic computing. To verify the practical viability of the device, an emulation was seamlessly integrated into a spiking neural network framework, allowing for real-time signal classification. In this specific case, the device excelled in the classification of electrocardiogram (ECG) signals, achieving an impressive accuracy rate of 85.6%. This outcome highlights the device's efficacy in handling real-world signal processing tasks with remarkable precision and efficiency.</p>\\n </div>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SG-FET Based Spiking Neuron With Ultra-Low Energy Consumption for ECG Signal Classification
This paper presents an energy-efficient single-transistor leaky integrate-and-fire neuron, based on Suspended Gate-FET (SG-FET), for signal classification and neuromorphic computing applications. By leveraging the SG-FET model, extensive simulations were conducted to demonstrate the device's remarkable neuronal ability. The device faithfully emulated the intricate behaviour of biological neurons, without the need for external circuitry. One of the standout achievements lies in the device's astonishingly low energy consumption of 94.5 aJ per spike. Therefore, it outperforms the previously proposed one-transistor (1-T) neurons, which makes it a potential candidate for energy-efficient neuromorphic computing. To verify the practical viability of the device, an emulation was seamlessly integrated into a spiking neural network framework, allowing for real-time signal classification. In this specific case, the device excelled in the classification of electrocardiogram (ECG) signals, achieving an impressive accuracy rate of 85.6%. This outcome highlights the device's efficacy in handling real-world signal processing tasks with remarkable precision and efficiency.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.