{"title":"相对论Thomas-Fermi模型的深入研究:改进与数值模拟","authors":"Luca Nanni","doi":"10.1002/qua.27523","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The relativistic Thomas–Fermi model is revisited in the framework of von Weizsacker's kinetic energy functional. This model, already studied by other authors, is optimized by weighting the von Weizsacker functional with a numerical parameter and introducing a retardation term in the potential energy functional to improve its predictivity when applied to systems with a complex electronic structure. These corrections avoid overestimating the total kinetic energy and underestimating the stabilizing effect of the Coulomb potential, respectively. The model is applied to neutral and ionized atoms with increasing atomic numbers to test the qualitative and quantitative predictivity goodness of the relativistic effects. Due to the simplicity of solving the relativistic equation by numerical methods, the proposed model could be an alternative or a supportive tool to other computational methods for studying the physicochemical properties of compounds containing heavy atoms.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 23","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An In-Depth Study on the Relativistic Thomas–Fermi Model: Improvements and Numerical Simulations\",\"authors\":\"Luca Nanni\",\"doi\":\"10.1002/qua.27523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The relativistic Thomas–Fermi model is revisited in the framework of von Weizsacker's kinetic energy functional. This model, already studied by other authors, is optimized by weighting the von Weizsacker functional with a numerical parameter and introducing a retardation term in the potential energy functional to improve its predictivity when applied to systems with a complex electronic structure. These corrections avoid overestimating the total kinetic energy and underestimating the stabilizing effect of the Coulomb potential, respectively. The model is applied to neutral and ionized atoms with increasing atomic numbers to test the qualitative and quantitative predictivity goodness of the relativistic effects. Due to the simplicity of solving the relativistic equation by numerical methods, the proposed model could be an alternative or a supportive tool to other computational methods for studying the physicochemical properties of compounds containing heavy atoms.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 23\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27523\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27523","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An In-Depth Study on the Relativistic Thomas–Fermi Model: Improvements and Numerical Simulations
The relativistic Thomas–Fermi model is revisited in the framework of von Weizsacker's kinetic energy functional. This model, already studied by other authors, is optimized by weighting the von Weizsacker functional with a numerical parameter and introducing a retardation term in the potential energy functional to improve its predictivity when applied to systems with a complex electronic structure. These corrections avoid overestimating the total kinetic energy and underestimating the stabilizing effect of the Coulomb potential, respectively. The model is applied to neutral and ionized atoms with increasing atomic numbers to test the qualitative and quantitative predictivity goodness of the relativistic effects. Due to the simplicity of solving the relativistic equation by numerical methods, the proposed model could be an alternative or a supportive tool to other computational methods for studying the physicochemical properties of compounds containing heavy atoms.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.